| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invinv | Structured version Visualization version GIF version | ||
| Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| invinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| invinv | ⊢ (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | invsym2 17778 | . . 3 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| 7 | 6 | fveq1d 6888 | . 2 ⊢ (𝜑 → (◡(𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹))) |
| 8 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
| 9 | 1, 2, 3, 4, 5, 8 | invf1o 17784 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
| 10 | invinv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 11 | f1ocnvfv1 7278 | . . 3 ⊢ (((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ∧ 𝐹 ∈ (𝑋𝐼𝑌)) → (◡(𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) | |
| 12 | 9, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡(𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) |
| 13 | 7, 12 | eqtr3d 2771 | 1 ⊢ (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ◡ccnv 5664 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Catccat 17678 Invcinv 17760 Isociso 17761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-cat 17682 df-cid 17683 df-sect 17762 df-inv 17763 df-iso 17764 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |