MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invinv Structured version   Visualization version   GIF version

Theorem invinv 17827
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invinv (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)

Proof of Theorem invinv
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invsym2 17820 . . 3 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
76fveq1d 6916 . 2 (𝜑 → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)))
8 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
91, 2, 3, 4, 5, 8invf1o 17826 . . 3 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))
10 invinv.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
11 f1ocnvfv1 7303 . . 3 (((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ∧ 𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
129, 10, 11syl2anc 584 . 2 (𝜑 → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
137, 12eqtr3d 2779 1 (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  ccnv 5692  1-1-ontowf1o 6568  cfv 6569  (class class class)co 7438  Basecbs 17254  Catccat 17718  Invcinv 17802  Isociso 17803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-cat 17722  df-cid 17723  df-sect 17804  df-inv 17805  df-iso 17806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator