MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invinv Structured version   Visualization version   GIF version

Theorem invinv 17831
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invinv (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)

Proof of Theorem invinv
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invsym2 17824 . . 3 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
76fveq1d 6922 . 2 (𝜑 → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)))
8 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
91, 2, 3, 4, 5, 8invf1o 17830 . . 3 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))
10 invinv.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
11 f1ocnvfv1 7312 . . 3 (((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ∧ 𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
129, 10, 11syl2anc 583 . 2 (𝜑 → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
137, 12eqtr3d 2782 1 (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  ccnv 5699  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Basecbs 17258  Catccat 17722  Invcinv 17806  Isociso 17807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-cat 17726  df-cid 17727  df-sect 17808  df-inv 17809  df-iso 17810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator