MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invinv Structured version   Visualization version   GIF version

Theorem invinv 17399
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
invinv (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)

Proof of Theorem invinv
StepHypRef Expression
1 invfval.b . . . 4 𝐵 = (Base‘𝐶)
2 invfval.n . . . 4 𝑁 = (Inv‘𝐶)
3 invfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . 4 (𝜑𝑋𝐵)
5 invfval.y . . . 4 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invsym2 17392 . . 3 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
76fveq1d 6758 . 2 (𝜑 → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)))
8 isoval.n . . . 4 𝐼 = (Iso‘𝐶)
91, 2, 3, 4, 5, 8invf1o 17398 . . 3 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋))
10 invinv.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
11 f1ocnvfv1 7129 . . 3 (((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ∧ 𝐹 ∈ (𝑋𝐼𝑌)) → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
129, 10, 11syl2anc 583 . 2 (𝜑 → ((𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
137, 12eqtr3d 2780 1 (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  ccnv 5579  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Invcinv 17374  Isociso 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-iso 17378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator