Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invinv | Structured version Visualization version GIF version |
Description: The inverse of the inverse of an isomorphism is itself. Proposition 3.14(1) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
invinv.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
invinv | ⊢ (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . 4 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | invsym2 17105 | . . 3 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
7 | 6 | fveq1d 6665 | . 2 ⊢ (𝜑 → (◡(𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹))) |
8 | isoval.n | . . . 4 ⊢ 𝐼 = (Iso‘𝐶) | |
9 | 1, 2, 3, 4, 5, 8 | invf1o 17111 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋)) |
10 | invinv.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
11 | f1ocnvfv1 7031 | . . 3 ⊢ (((𝑋𝑁𝑌):(𝑋𝐼𝑌)–1-1-onto→(𝑌𝐼𝑋) ∧ 𝐹 ∈ (𝑋𝐼𝑌)) → (◡(𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) | |
12 | 9, 10, 11 | syl2anc 587 | . 2 ⊢ (𝜑 → (◡(𝑋𝑁𝑌)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) |
13 | 7, 12 | eqtr3d 2795 | 1 ⊢ (𝜑 → ((𝑌𝑁𝑋)‘((𝑋𝑁𝑌)‘𝐹)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ◡ccnv 5527 –1-1-onto→wf1o 6339 ‘cfv 6340 (class class class)co 7156 Basecbs 16554 Catccat 17006 Invcinv 17087 Isociso 17088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-cat 17010 df-cid 17011 df-sect 17089 df-inv 17090 df-iso 17091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |