MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invco Structured version   Visualization version   GIF version

Theorem invco 17035
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invco.o · = (comp‘𝐶)
invco.z (𝜑𝑍𝐵)
invco.f (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
invco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))

Proof of Theorem invco
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invco.o . . 3 · = (comp‘𝐶)
3 eqid 2821 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
4 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 invfval.x . . 3 (𝜑𝑋𝐵)
6 invfval.y . . 3 (𝜑𝑌𝐵)
7 invco.z . . 3 (𝜑𝑍𝐵)
8 invinv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 invfval.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
10 isoval.n . . . . . . . 8 𝐼 = (Iso‘𝐶)
111, 9, 4, 5, 6, 10isoval 17029 . . . . . . 7 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
128, 11eleqtrd 2915 . . . . . 6 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
131, 9, 4, 5, 6invfun 17028 . . . . . . 7 (𝜑 → Fun (𝑋𝑁𝑌))
14 funfvbrb 6815 . . . . . . 7 (Fun (𝑋𝑁𝑌) → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1513, 14syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1612, 15mpbid 234 . . . . 5 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
171, 9, 4, 5, 6, 3isinv 17024 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
1816, 17mpbid 234 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
1918simpld 497 . . 3 (𝜑𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
20 invco.f . . . . . . 7 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
211, 9, 4, 6, 7, 10isoval 17029 . . . . . . 7 (𝜑 → (𝑌𝐼𝑍) = dom (𝑌𝑁𝑍))
2220, 21eleqtrd 2915 . . . . . 6 (𝜑𝐺 ∈ dom (𝑌𝑁𝑍))
231, 9, 4, 6, 7invfun 17028 . . . . . . 7 (𝜑 → Fun (𝑌𝑁𝑍))
24 funfvbrb 6815 . . . . . . 7 (Fun (𝑌𝑁𝑍) → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2523, 24syl 17 . . . . . 6 (𝜑 → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2622, 25mpbid 234 . . . . 5 (𝜑𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺))
271, 9, 4, 6, 7, 3isinv 17024 . . . . 5 (𝜑 → (𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺) ↔ (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)))
2826, 27mpbid 234 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺))
2928simpld 497 . . 3 (𝜑𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺))
301, 2, 3, 4, 5, 6, 7, 19, 29sectco 17020 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
3128simprd 498 . . 3 (𝜑 → ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)
3218simprd 498 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
331, 2, 3, 4, 7, 6, 5, 31, 32sectco 17020 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
341, 9, 4, 5, 7, 3isinv 17024 . 2 (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ∧ (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
3530, 33, 34mpbir2and 711 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cop 4566   class class class wbr 5058  dom cdm 5549  Fun wfun 6343  cfv 6349  (class class class)co 7150  Basecbs 16477  compcco 16571  Catccat 16929  Sectcsect 17008  Invcinv 17009  Isociso 17010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7683  df-2nd 7684  df-cat 16933  df-cid 16934  df-sect 17011  df-inv 17012  df-iso 17013
This theorem is referenced by:  isoco  17041  invisoinvl  17054
  Copyright terms: Public domain W3C validator