MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invco Structured version   Visualization version   GIF version

Theorem invco 16790
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invco.o · = (comp‘𝐶)
invco.z (𝜑𝑍𝐵)
invco.f (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
invco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))

Proof of Theorem invco
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invco.o . . 3 · = (comp‘𝐶)
3 eqid 2825 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
4 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 invfval.x . . 3 (𝜑𝑋𝐵)
6 invfval.y . . 3 (𝜑𝑌𝐵)
7 invco.z . . 3 (𝜑𝑍𝐵)
8 invinv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 invfval.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
10 isoval.n . . . . . . . 8 𝐼 = (Iso‘𝐶)
111, 9, 4, 5, 6, 10isoval 16784 . . . . . . 7 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
128, 11eleqtrd 2908 . . . . . 6 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
131, 9, 4, 5, 6invfun 16783 . . . . . . 7 (𝜑 → Fun (𝑋𝑁𝑌))
14 funfvbrb 6584 . . . . . . 7 (Fun (𝑋𝑁𝑌) → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1513, 14syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1612, 15mpbid 224 . . . . 5 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
171, 9, 4, 5, 6, 3isinv 16779 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
1816, 17mpbid 224 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
1918simpld 490 . . 3 (𝜑𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
20 invco.f . . . . . . 7 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
211, 9, 4, 6, 7, 10isoval 16784 . . . . . . 7 (𝜑 → (𝑌𝐼𝑍) = dom (𝑌𝑁𝑍))
2220, 21eleqtrd 2908 . . . . . 6 (𝜑𝐺 ∈ dom (𝑌𝑁𝑍))
231, 9, 4, 6, 7invfun 16783 . . . . . . 7 (𝜑 → Fun (𝑌𝑁𝑍))
24 funfvbrb 6584 . . . . . . 7 (Fun (𝑌𝑁𝑍) → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2523, 24syl 17 . . . . . 6 (𝜑 → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2622, 25mpbid 224 . . . . 5 (𝜑𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺))
271, 9, 4, 6, 7, 3isinv 16779 . . . . 5 (𝜑 → (𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺) ↔ (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)))
2826, 27mpbid 224 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺))
2928simpld 490 . . 3 (𝜑𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺))
301, 2, 3, 4, 5, 6, 7, 19, 29sectco 16775 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
3128simprd 491 . . 3 (𝜑 → ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)
3218simprd 491 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
331, 2, 3, 4, 7, 6, 5, 31, 32sectco 16775 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
341, 9, 4, 5, 7, 3isinv 16779 . 2 (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ∧ (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
3530, 33, 34mpbir2and 704 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  cop 4405   class class class wbr 4875  dom cdm 5346  Fun wfun 6121  cfv 6127  (class class class)co 6910  Basecbs 16229  compcco 16324  Catccat 16684  Sectcsect 16763  Invcinv 16764  Isociso 16765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-cat 16688  df-cid 16689  df-sect 16766  df-inv 16767  df-iso 16768
This theorem is referenced by:  isoco  16796  invisoinvl  16809
  Copyright terms: Public domain W3C validator