MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invco Structured version   Visualization version   GIF version

Theorem invco 17686
Description: The composition of two isomorphisms is an isomorphism, and the inverse is the composition of the individual inverses. Proposition 3.14(2) of [Adamek] p. 29. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
invinv.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
invco.o · = (comp‘𝐶)
invco.z (𝜑𝑍𝐵)
invco.f (𝜑𝐺 ∈ (𝑌𝐼𝑍))
Assertion
Ref Expression
invco (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))

Proof of Theorem invco
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invco.o . . 3 · = (comp‘𝐶)
3 eqid 2733 . . 3 (Sect‘𝐶) = (Sect‘𝐶)
4 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
5 invss.x . . 3 (𝜑𝑋𝐵)
6 invss.y . . 3 (𝜑𝑌𝐵)
7 invco.z . . 3 (𝜑𝑍𝐵)
8 invinv.f . . . . . . 7 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
9 invfval.n . . . . . . . 8 𝑁 = (Inv‘𝐶)
10 isoval.n . . . . . . . 8 𝐼 = (Iso‘𝐶)
111, 9, 4, 5, 6, 10isoval 17680 . . . . . . 7 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
128, 11eleqtrd 2835 . . . . . 6 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
131, 9, 4, 5, 6invfun 17679 . . . . . . 7 (𝜑 → Fun (𝑋𝑁𝑌))
14 funfvbrb 6993 . . . . . . 7 (Fun (𝑋𝑁𝑌) → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1513, 14syl 17 . . . . . 6 (𝜑 → (𝐹 ∈ dom (𝑋𝑁𝑌) ↔ 𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹)))
1612, 15mpbid 232 . . . . 5 (𝜑𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹))
171, 9, 4, 5, 6, 3isinv 17675 . . . . 5 (𝜑 → (𝐹(𝑋𝑁𝑌)((𝑋𝑁𝑌)‘𝐹) ↔ (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)))
1816, 17mpbid 232 . . . 4 (𝜑 → (𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹) ∧ ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹))
1918simpld 494 . . 3 (𝜑𝐹(𝑋(Sect‘𝐶)𝑌)((𝑋𝑁𝑌)‘𝐹))
20 invco.f . . . . . . 7 (𝜑𝐺 ∈ (𝑌𝐼𝑍))
211, 9, 4, 6, 7, 10isoval 17680 . . . . . . 7 (𝜑 → (𝑌𝐼𝑍) = dom (𝑌𝑁𝑍))
2220, 21eleqtrd 2835 . . . . . 6 (𝜑𝐺 ∈ dom (𝑌𝑁𝑍))
231, 9, 4, 6, 7invfun 17679 . . . . . . 7 (𝜑 → Fun (𝑌𝑁𝑍))
24 funfvbrb 6993 . . . . . . 7 (Fun (𝑌𝑁𝑍) → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2523, 24syl 17 . . . . . 6 (𝜑 → (𝐺 ∈ dom (𝑌𝑁𝑍) ↔ 𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺)))
2622, 25mpbid 232 . . . . 5 (𝜑𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺))
271, 9, 4, 6, 7, 3isinv 17675 . . . . 5 (𝜑 → (𝐺(𝑌𝑁𝑍)((𝑌𝑁𝑍)‘𝐺) ↔ (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)))
2826, 27mpbid 232 . . . 4 (𝜑 → (𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺) ∧ ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺))
2928simpld 494 . . 3 (𝜑𝐺(𝑌(Sect‘𝐶)𝑍)((𝑌𝑁𝑍)‘𝐺))
301, 2, 3, 4, 5, 6, 7, 19, 29sectco 17671 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
3128simprd 495 . . 3 (𝜑 → ((𝑌𝑁𝑍)‘𝐺)(𝑍(Sect‘𝐶)𝑌)𝐺)
3218simprd 495 . . 3 (𝜑 → ((𝑋𝑁𝑌)‘𝐹)(𝑌(Sect‘𝐶)𝑋)𝐹)
331, 2, 3, 4, 7, 6, 5, 31, 32sectco 17671 . 2 (𝜑 → (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
341, 9, 4, 5, 7, 3isinv 17675 . 2 (𝜑 → ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ↔ ((𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋(Sect‘𝐶)𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)) ∧ (((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺))(𝑍(Sect‘𝐶)𝑋)(𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))))
3530, 33, 34mpbir2and 713 1 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹)(𝑋𝑁𝑍)(((𝑋𝑁𝑌)‘𝐹)(⟨𝑍, 𝑌· 𝑋)((𝑌𝑁𝑍)‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cop 4583   class class class wbr 5095  dom cdm 5621  Fun wfun 6483  cfv 6489  (class class class)co 7355  Basecbs 17127  compcco 17180  Catccat 17578  Sectcsect 17659  Invcinv 17660  Isociso 17661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-cat 17582  df-cid 17583  df-sect 17662  df-inv 17663  df-iso 17664
This theorem is referenced by:  isoco  17692  invisoinvl  17705
  Copyright terms: Public domain W3C validator