MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf Structured version   Visualization version   GIF version

Theorem invf 17730
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
invf (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))

Proof of Theorem invf
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invss.x . . . . 5 (𝜑𝑋𝐵)
5 invss.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17726 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
76funfnd 6547 . . 3 (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))
8 isoval.n . . . . 5 𝐼 = (Iso‘𝐶)
91, 2, 3, 4, 5, 8isoval 17727 . . . 4 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
109fneq2d 6612 . . 3 (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)))
117, 10mpbird 257 . 2 (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌))
12 df-rn 5649 . . . 4 ran (𝑋𝑁𝑌) = dom (𝑋𝑁𝑌)
131, 2, 3, 4, 5invsym2 17725 . . . . . 6 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
1413dmeqd 5869 . . . . 5 (𝜑 → dom (𝑋𝑁𝑌) = dom (𝑌𝑁𝑋))
151, 2, 3, 5, 4, 8isoval 17727 . . . . 5 (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋))
1614, 15eqtr4d 2767 . . . 4 (𝜑 → dom (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
1712, 16eqtrid 2776 . . 3 (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
18 eqimss 4005 . . 3 (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
1917, 18syl 17 . 2 (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
20 df-f 6515 . 2 ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)))
2111, 19, 20sylanbrc 583 1 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Catccat 17625  Invcinv 17707  Isociso 17708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-cat 17629  df-cid 17630  df-sect 17709  df-inv 17710  df-iso 17711
This theorem is referenced by:  invf1o  17731  invisoinvl  17752  invcoisoid  17754  isocoinvid  17755  rcaninv  17756  ffthiso  17893  initoeu2lem1  17976  upeu2lem  49017  thincciso3  49445
  Copyright terms: Public domain W3C validator