![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invf | Structured version Visualization version GIF version |
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
invf | ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | invfun 17825 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
7 | 6 | funfnd 6609 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)) |
8 | isoval.n | . . . . 5 ⊢ 𝐼 = (Iso‘𝐶) | |
9 | 1, 2, 3, 4, 5, 8 | isoval 17826 | . . . 4 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
10 | 9 | fneq2d 6673 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))) |
11 | 7, 10 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌)) |
12 | df-rn 5711 | . . . 4 ⊢ ran (𝑋𝑁𝑌) = dom ◡(𝑋𝑁𝑌) | |
13 | 1, 2, 3, 4, 5 | invsym2 17824 | . . . . . 6 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
14 | 13 | dmeqd 5930 | . . . . 5 ⊢ (𝜑 → dom ◡(𝑋𝑁𝑌) = dom (𝑌𝑁𝑋)) |
15 | 1, 2, 3, 5, 4, 8 | isoval 17826 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋)) |
16 | 14, 15 | eqtr4d 2783 | . . . 4 ⊢ (𝜑 → dom ◡(𝑋𝑁𝑌) = (𝑌𝐼𝑋)) |
17 | 12, 16 | eqtrid 2792 | . . 3 ⊢ (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋)) |
18 | eqimss 4067 | . . 3 ⊢ (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)) |
20 | df-f 6577 | . 2 ⊢ ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))) | |
21 | 11, 19, 20 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ◡ccnv 5699 dom cdm 5700 ran crn 5701 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Catccat 17722 Invcinv 17806 Isociso 17807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-cat 17726 df-cid 17727 df-sect 17808 df-inv 17809 df-iso 17810 |
This theorem is referenced by: invf1o 17830 invisoinvl 17851 invcoisoid 17853 isocoinvid 17854 rcaninv 17855 ffthiso 17996 initoeu2lem1 18081 |
Copyright terms: Public domain | W3C validator |