| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invf | Structured version Visualization version GIF version | ||
| Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| Ref | Expression |
|---|---|
| invf | ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | invfun 17679 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
| 7 | 6 | funfnd 6520 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)) |
| 8 | isoval.n | . . . . 5 ⊢ 𝐼 = (Iso‘𝐶) | |
| 9 | 1, 2, 3, 4, 5, 8 | isoval 17680 | . . . 4 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| 10 | 9 | fneq2d 6583 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))) |
| 11 | 7, 10 | mpbird 257 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌)) |
| 12 | df-rn 5632 | . . . 4 ⊢ ran (𝑋𝑁𝑌) = dom ◡(𝑋𝑁𝑌) | |
| 13 | 1, 2, 3, 4, 5 | invsym2 17678 | . . . . . 6 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
| 14 | 13 | dmeqd 5851 | . . . . 5 ⊢ (𝜑 → dom ◡(𝑋𝑁𝑌) = dom (𝑌𝑁𝑋)) |
| 15 | 1, 2, 3, 5, 4, 8 | isoval 17680 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋)) |
| 16 | 14, 15 | eqtr4d 2771 | . . . 4 ⊢ (𝜑 → dom ◡(𝑋𝑁𝑌) = (𝑌𝐼𝑋)) |
| 17 | 12, 16 | eqtrid 2780 | . . 3 ⊢ (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋)) |
| 18 | eqimss 3989 | . . 3 ⊢ (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)) |
| 20 | df-f 6493 | . 2 ⊢ ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))) | |
| 21 | 11, 19, 20 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ◡ccnv 5620 dom cdm 5621 ran crn 5622 Fn wfn 6484 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Catccat 17578 Invcinv 17660 Isociso 17661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-cat 17582 df-cid 17583 df-sect 17662 df-inv 17663 df-iso 17664 |
| This theorem is referenced by: invf1o 17684 invisoinvl 17705 invcoisoid 17707 isocoinvid 17708 rcaninv 17709 ffthiso 17846 initoeu2lem1 17929 upeu2lem 49189 thincciso3 49617 |
| Copyright terms: Public domain | W3C validator |