MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invf Structured version   Visualization version   GIF version

Theorem invf 17030
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
Assertion
Ref Expression
invf (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))

Proof of Theorem invf
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17026 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
76funfnd 6355 . . 3 (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))
8 isoval.n . . . . 5 𝐼 = (Iso‘𝐶)
91, 2, 3, 4, 5, 8isoval 17027 . . . 4 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
109fneq2d 6417 . . 3 (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)))
117, 10mpbird 260 . 2 (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌))
12 df-rn 5530 . . . 4 ran (𝑋𝑁𝑌) = dom (𝑋𝑁𝑌)
131, 2, 3, 4, 5invsym2 17025 . . . . . 6 (𝜑(𝑋𝑁𝑌) = (𝑌𝑁𝑋))
1413dmeqd 5738 . . . . 5 (𝜑 → dom (𝑋𝑁𝑌) = dom (𝑌𝑁𝑋))
151, 2, 3, 5, 4, 8isoval 17027 . . . . 5 (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋))
1614, 15eqtr4d 2836 . . . 4 (𝜑 → dom (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
1712, 16syl5eq 2845 . . 3 (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋))
18 eqimss 3971 . . 3 (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
1917, 18syl 17 . 2 (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))
20 df-f 6328 . 2 ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)))
2111, 19, 20sylanbrc 586 1 (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  wss 3881  ccnv 5518  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Basecbs 16475  Catccat 16927  Invcinv 17007  Isociso 17008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-cat 16931  df-cid 16932  df-sect 17009  df-inv 17010  df-iso 17011
This theorem is referenced by:  invf1o  17031  invisoinvl  17052  invcoisoid  17054  isocoinvid  17055  rcaninv  17056  ffthiso  17191  initoeu2lem1  17266
  Copyright terms: Public domain W3C validator