Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > invf | Structured version Visualization version GIF version |
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
Ref | Expression |
---|---|
invf | ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | invfun 17393 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
7 | 6 | funfnd 6449 | . . 3 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌)) |
8 | isoval.n | . . . . 5 ⊢ 𝐼 = (Iso‘𝐶) | |
9 | 1, 2, 3, 4, 5, 8 | isoval 17394 | . . . 4 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
10 | 9 | fneq2d 6511 | . . 3 ⊢ (𝜑 → ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ↔ (𝑋𝑁𝑌) Fn dom (𝑋𝑁𝑌))) |
11 | 7, 10 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑋𝑁𝑌) Fn (𝑋𝐼𝑌)) |
12 | df-rn 5591 | . . . 4 ⊢ ran (𝑋𝑁𝑌) = dom ◡(𝑋𝑁𝑌) | |
13 | 1, 2, 3, 4, 5 | invsym2 17392 | . . . . . 6 ⊢ (𝜑 → ◡(𝑋𝑁𝑌) = (𝑌𝑁𝑋)) |
14 | 13 | dmeqd 5803 | . . . . 5 ⊢ (𝜑 → dom ◡(𝑋𝑁𝑌) = dom (𝑌𝑁𝑋)) |
15 | 1, 2, 3, 5, 4, 8 | isoval 17394 | . . . . 5 ⊢ (𝜑 → (𝑌𝐼𝑋) = dom (𝑌𝑁𝑋)) |
16 | 14, 15 | eqtr4d 2781 | . . . 4 ⊢ (𝜑 → dom ◡(𝑋𝑁𝑌) = (𝑌𝐼𝑋)) |
17 | 12, 16 | eqtrid 2790 | . . 3 ⊢ (𝜑 → ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋)) |
18 | eqimss 3973 | . . 3 ⊢ (ran (𝑋𝑁𝑌) = (𝑌𝐼𝑋) → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)) | |
19 | 17, 18 | syl 17 | . 2 ⊢ (𝜑 → ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋)) |
20 | df-f 6422 | . 2 ⊢ ((𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋) ↔ ((𝑋𝑁𝑌) Fn (𝑋𝐼𝑌) ∧ ran (𝑋𝑁𝑌) ⊆ (𝑌𝐼𝑋))) | |
21 | 11, 19, 20 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌):(𝑋𝐼𝑌)⟶(𝑌𝐼𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ◡ccnv 5579 dom cdm 5580 ran crn 5581 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Catccat 17290 Invcinv 17374 Isociso 17375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-cat 17294 df-cid 17295 df-sect 17376 df-inv 17377 df-iso 17378 |
This theorem is referenced by: invf1o 17398 invisoinvl 17419 invcoisoid 17421 isocoinvid 17422 rcaninv 17423 ffthiso 17561 initoeu2lem1 17645 |
Copyright terms: Public domain | W3C validator |