![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invf | Structured version Visualization version GIF version |
Description: The inverse relation is a function from isomorphisms to isomorphisms. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
isoval.n | β’ πΌ = (IsoβπΆ) |
Ref | Expression |
---|---|
invf | β’ (π β (πππ):(ππΌπ)βΆ(ππΌπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
2 | invfval.n | . . . . 5 β’ π = (InvβπΆ) | |
3 | invfval.c | . . . . 5 β’ (π β πΆ β Cat) | |
4 | invfval.x | . . . . 5 β’ (π β π β π΅) | |
5 | invfval.y | . . . . 5 β’ (π β π β π΅) | |
6 | 1, 2, 3, 4, 5 | invfun 17707 | . . . 4 β’ (π β Fun (πππ)) |
7 | 6 | funfnd 6576 | . . 3 β’ (π β (πππ) Fn dom (πππ)) |
8 | isoval.n | . . . . 5 β’ πΌ = (IsoβπΆ) | |
9 | 1, 2, 3, 4, 5, 8 | isoval 17708 | . . . 4 β’ (π β (ππΌπ) = dom (πππ)) |
10 | 9 | fneq2d 6640 | . . 3 β’ (π β ((πππ) Fn (ππΌπ) β (πππ) Fn dom (πππ))) |
11 | 7, 10 | mpbird 256 | . 2 β’ (π β (πππ) Fn (ππΌπ)) |
12 | df-rn 5686 | . . . 4 β’ ran (πππ) = dom β‘(πππ) | |
13 | 1, 2, 3, 4, 5 | invsym2 17706 | . . . . . 6 β’ (π β β‘(πππ) = (πππ)) |
14 | 13 | dmeqd 5903 | . . . . 5 β’ (π β dom β‘(πππ) = dom (πππ)) |
15 | 1, 2, 3, 5, 4, 8 | isoval 17708 | . . . . 5 β’ (π β (ππΌπ) = dom (πππ)) |
16 | 14, 15 | eqtr4d 2775 | . . . 4 β’ (π β dom β‘(πππ) = (ππΌπ)) |
17 | 12, 16 | eqtrid 2784 | . . 3 β’ (π β ran (πππ) = (ππΌπ)) |
18 | eqimss 4039 | . . 3 β’ (ran (πππ) = (ππΌπ) β ran (πππ) β (ππΌπ)) | |
19 | 17, 18 | syl 17 | . 2 β’ (π β ran (πππ) β (ππΌπ)) |
20 | df-f 6544 | . 2 β’ ((πππ):(ππΌπ)βΆ(ππΌπ) β ((πππ) Fn (ππΌπ) β§ ran (πππ) β (ππΌπ))) | |
21 | 11, 19, 20 | sylanbrc 583 | 1 β’ (π β (πππ):(ππΌπ)βΆ(ππΌπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wss 3947 β‘ccnv 5674 dom cdm 5675 ran crn 5676 Fn wfn 6535 βΆwf 6536 βcfv 6540 (class class class)co 7405 Basecbs 17140 Catccat 17604 Invcinv 17688 Isociso 17689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-cat 17608 df-cid 17609 df-sect 17690 df-inv 17691 df-iso 17692 |
This theorem is referenced by: invf1o 17712 invisoinvl 17733 invcoisoid 17735 isocoinvid 17736 rcaninv 17737 ffthiso 17876 initoeu2lem1 17960 |
Copyright terms: Public domain | W3C validator |