MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso1 Structured version   Visualization version   GIF version

Theorem inviso1 17673
Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
inviso1.1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
inviso1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))

Proof of Theorem inviso1
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invss.x . . . . 5 (𝜑𝑋𝐵)
5 invss.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17671 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
7 funrel 6499 . . . 4 (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌))
86, 7syl 17 . . 3 (𝜑 → Rel (𝑋𝑁𝑌))
9 inviso1.1 . . 3 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
10 releldm 5886 . . 3 ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌))
118, 9, 10syl2anc 584 . 2 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
12 isoval.n . . 3 𝐼 = (Iso‘𝐶)
131, 2, 3, 4, 5, 12isoval 17672 . 2 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
1411, 13eleqtrrd 2831 1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5092  dom cdm 5619  Rel wrel 5624  Fun wfun 6476  cfv 6482  (class class class)co 7349  Basecbs 17120  Catccat 17570  Invcinv 17652  Isociso 17653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-iso 17656
This theorem is referenced by:  inviso2  17674  isoco  17684  idiso  17695  funciso  17781  ffthiso  17838  fuciso  17885  initoeu1  17918  termoeu1  17925  catciso  18018  yoneda  18189  isoval2  49030
  Copyright terms: Public domain W3C validator