MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso1 Structured version   Visualization version   GIF version

Theorem inviso1 17708
Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invss.x (𝜑𝑋𝐵)
invss.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
inviso1.1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
inviso1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))

Proof of Theorem inviso1
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invss.x . . . . 5 (𝜑𝑋𝐵)
5 invss.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17706 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
7 funrel 6517 . . . 4 (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌))
86, 7syl 17 . . 3 (𝜑 → Rel (𝑋𝑁𝑌))
9 inviso1.1 . . 3 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
10 releldm 5897 . . 3 ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌))
118, 9, 10syl2anc 584 . 2 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
12 isoval.n . . 3 𝐼 = (Iso‘𝐶)
131, 2, 3, 4, 5, 12isoval 17707 . 2 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
1411, 13eleqtrrd 2831 1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109   class class class wbr 5102  dom cdm 5631  Rel wrel 5636  Fun wfun 6493  cfv 6499  (class class class)co 7369  Basecbs 17155  Catccat 17605  Invcinv 17687  Isociso 17688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-cat 17609  df-cid 17610  df-sect 17689  df-inv 17690  df-iso 17691
This theorem is referenced by:  inviso2  17709  isoco  17719  idiso  17730  funciso  17816  ffthiso  17873  fuciso  17920  initoeu1  17953  termoeu1  17960  catciso  18053  yoneda  18224  isoval2  49017
  Copyright terms: Public domain W3C validator