MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso1 Structured version   Visualization version   GIF version

Theorem inviso1 17478
Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
inviso1.1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
inviso1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))

Proof of Theorem inviso1
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17476 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
7 funrel 6451 . . . 4 (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌))
86, 7syl 17 . . 3 (𝜑 → Rel (𝑋𝑁𝑌))
9 inviso1.1 . . 3 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
10 releldm 5853 . . 3 ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌))
118, 9, 10syl2anc 584 . 2 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
12 isoval.n . . 3 𝐼 = (Iso‘𝐶)
131, 2, 3, 4, 5, 12isoval 17477 . 2 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
1411, 13eleqtrrd 2842 1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106   class class class wbr 5074  dom cdm 5589  Rel wrel 5594  Fun wfun 6427  cfv 6433  (class class class)co 7275  Basecbs 16912  Catccat 17373  Invcinv 17457  Isociso 17458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-cat 17377  df-cid 17378  df-sect 17459  df-inv 17460  df-iso 17461
This theorem is referenced by:  inviso2  17479  isoco  17489  idiso  17500  funciso  17589  ffthiso  17645  fuciso  17693  initoeu1  17726  termoeu1  17733  catciso  17826  yoneda  18001
  Copyright terms: Public domain W3C validator