|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > inviso1 | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) | 
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) | 
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) | 
| invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) | 
| inviso1.1 | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | 
| Ref | Expression | 
|---|---|
| inviso1 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | invfun 17809 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) | 
| 7 | funrel 6582 | . . . 4 ⊢ (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) | 
| 9 | inviso1.1 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
| 10 | releldm 5954 | . . 3 ⊢ ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌)) | |
| 11 | 8, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑋𝑁𝑌)) | 
| 12 | isoval.n | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 13 | 1, 2, 3, 4, 5, 12 | isoval 17810 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) | 
| 14 | 11, 13 | eleqtrrd 2843 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 dom cdm 5684 Rel wrel 5689 Fun wfun 6554 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 Catccat 17708 Invcinv 17790 Isociso 17791 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-cat 17712 df-cid 17713 df-sect 17792 df-inv 17793 df-iso 17794 | 
| This theorem is referenced by: inviso2 17812 isoco 17822 idiso 17833 funciso 17920 ffthiso 17977 fuciso 18024 initoeu1 18057 termoeu1 18064 catciso 18157 yoneda 18329 | 
| Copyright terms: Public domain | W3C validator |