MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inviso1 Structured version   Visualization version   GIF version

Theorem inviso1 17395
Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
isoval.n 𝐼 = (Iso‘𝐶)
inviso1.1 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
Assertion
Ref Expression
inviso1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))

Proof of Theorem inviso1
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
61, 2, 3, 4, 5invfun 17393 . . . 4 (𝜑 → Fun (𝑋𝑁𝑌))
7 funrel 6435 . . . 4 (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌))
86, 7syl 17 . . 3 (𝜑 → Rel (𝑋𝑁𝑌))
9 inviso1.1 . . 3 (𝜑𝐹(𝑋𝑁𝑌)𝐺)
10 releldm 5842 . . 3 ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌))
118, 9, 10syl2anc 583 . 2 (𝜑𝐹 ∈ dom (𝑋𝑁𝑌))
12 isoval.n . . 3 𝐼 = (Iso‘𝐶)
131, 2, 3, 4, 5, 12isoval 17394 . 2 (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌))
1411, 13eleqtrrd 2842 1 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108   class class class wbr 5070  dom cdm 5580  Rel wrel 5585  Fun wfun 6412  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Invcinv 17374  Isociso 17375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-cat 17294  df-cid 17295  df-sect 17376  df-inv 17377  df-iso 17378
This theorem is referenced by:  inviso2  17396  isoco  17406  idiso  17417  funciso  17505  ffthiso  17561  fuciso  17609  initoeu1  17642  termoeu1  17649  catciso  17742  yoneda  17917
  Copyright terms: Public domain W3C validator