Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inviso1 | Structured version Visualization version GIF version |
Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
inviso1.1 | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
Ref | Expression |
---|---|
inviso1 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | invfun 17476 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
7 | funrel 6451 | . . . 4 ⊢ (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
9 | inviso1.1 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
10 | releldm 5853 | . . 3 ⊢ ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌)) | |
11 | 8, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑋𝑁𝑌)) |
12 | isoval.n | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
13 | 1, 2, 3, 4, 5, 12 | isoval 17477 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
14 | 11, 13 | eleqtrrd 2842 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 dom cdm 5589 Rel wrel 5594 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Catccat 17373 Invcinv 17457 Isociso 17458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-cat 17377 df-cid 17378 df-sect 17459 df-inv 17460 df-iso 17461 |
This theorem is referenced by: inviso2 17479 isoco 17489 idiso 17500 funciso 17589 ffthiso 17645 fuciso 17693 initoeu1 17726 termoeu1 17733 catciso 17826 yoneda 18001 |
Copyright terms: Public domain | W3C validator |