| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inviso1 | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is an inverse to 𝐹, then 𝐹 is an isomorphism. (Contributed by Mario Carneiro, 3-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| isoval.n | ⊢ 𝐼 = (Iso‘𝐶) |
| inviso1.1 | ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) |
| Ref | Expression |
|---|---|
| inviso1 | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | 1, 2, 3, 4, 5 | invfun 17671 | . . . 4 ⊢ (𝜑 → Fun (𝑋𝑁𝑌)) |
| 7 | funrel 6499 | . . . 4 ⊢ (Fun (𝑋𝑁𝑌) → Rel (𝑋𝑁𝑌)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝜑 → Rel (𝑋𝑁𝑌)) |
| 9 | inviso1.1 | . . 3 ⊢ (𝜑 → 𝐹(𝑋𝑁𝑌)𝐺) | |
| 10 | releldm 5886 | . . 3 ⊢ ((Rel (𝑋𝑁𝑌) ∧ 𝐹(𝑋𝑁𝑌)𝐺) → 𝐹 ∈ dom (𝑋𝑁𝑌)) | |
| 11 | 8, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 ∈ dom (𝑋𝑁𝑌)) |
| 12 | isoval.n | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 13 | 1, 2, 3, 4, 5, 12 | isoval 17672 | . 2 ⊢ (𝜑 → (𝑋𝐼𝑌) = dom (𝑋𝑁𝑌)) |
| 14 | 11, 13 | eleqtrrd 2831 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 Rel wrel 5624 Fun wfun 6476 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Catccat 17570 Invcinv 17652 Isociso 17653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-cat 17574 df-cid 17575 df-sect 17654 df-inv 17655 df-iso 17656 |
| This theorem is referenced by: inviso2 17674 isoco 17684 idiso 17695 funciso 17781 ffthiso 17838 fuciso 17885 initoeu1 17918 termoeu1 17925 catciso 18018 yoneda 18189 isoval2 49030 |
| Copyright terms: Public domain | W3C validator |