MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metcld Structured version   Visualization version   GIF version

Theorem metcld 25341
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by NM, 11-Nov-2007.) (Revised by Mario Carneiro, 1-May-2014.)
Hypothesis
Ref Expression
metcld.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
metcld ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
Distinct variable groups:   𝑥,𝑓,𝐷   𝑓,𝐽,𝑥   𝑆,𝑓,𝑥   𝑓,𝑋,𝑥

Proof of Theorem metcld
StepHypRef Expression
1 metcld.2 . . . 4 𝐽 = (MetOpen‘𝐷)
21mopntop 24451 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
31mopnuni 24452 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
43sseq2d 4015 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝑆𝑋𝑆 𝐽))
54biimpa 476 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆 𝐽)
6 eqid 2736 . . . 4 𝐽 = 𝐽
76iscld4 23074 . . 3 ((𝐽 ∈ Top ∧ 𝑆 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
82, 5, 7syl2an2r 685 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
9 19.23v 1941 . . . . 5 (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆))
10 simpl 482 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐷 ∈ (∞Met‘𝑋))
11 simpr 484 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝑆𝑋)
121, 10, 11metelcls 25340 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥)))
1312imbi1d 341 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → ((𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
149, 13bitr4id 290 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥𝑆)))
1514albidv 1919 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥𝑆)))
16 df-ss 3967 . . 3 (((cls‘𝐽)‘𝑆) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥𝑆))
1715, 16bitr4di 289 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆))
188, 17bitr4d 282 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑓((𝑓:ℕ⟶𝑆𝑓(⇝𝑡𝐽)𝑥) → 𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wex 1778  wcel 2107  wss 3950   cuni 4906   class class class wbr 5142  wf 6556  cfv 6560  cn 12267  ∞Metcxmet 21350  MetOpencmopn 21355  Topctop 22900  Clsdccld 23025  clsccl 23027  𝑡clm 23235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-fz 13549  df-topgen 17489  df-psmet 21357  df-xmet 21358  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-lm 23238  df-1stc 23448
This theorem is referenced by:  metcld2  25342
  Copyright terms: Public domain W3C validator