![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metcld | Structured version Visualization version GIF version |
Description: A subset of a metric space is closed iff every convergent sequence on it converges to a point in the subset. Theorem 1.4-6(b) of [Kreyszig] p. 30. (Contributed by NM, 11-Nov-2007.) (Revised by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
metcld.2 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
metcld | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metcld.2 | . . . . 5 ⊢ 𝐽 = (MetOpen‘𝐷) | |
2 | 1 | mopntop 22657 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
4 | 1 | mopnuni 22658 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
5 | 4 | sseq2d 3852 | . . . 4 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑆 ⊆ 𝑋 ↔ 𝑆 ⊆ ∪ 𝐽)) |
6 | 5 | biimpa 470 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ ∪ 𝐽) |
7 | eqid 2778 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
8 | 7 | iscld4 21281 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) |
9 | 3, 6, 8 | syl2anc 579 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) |
10 | simpl 476 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
11 | simpr 479 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) | |
12 | 1, 10, 11 | metelcls 23515 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥))) |
13 | 12 | imbi1d 333 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ((𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ 𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) |
14 | 19.23v 1985 | . . . . 5 ⊢ (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (∃𝑓(𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆)) | |
15 | 13, 14 | syl6rbbr 282 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ (𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ 𝑆))) |
16 | 15 | albidv 1963 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ 𝑆))) |
17 | dfss2 3809 | . . 3 ⊢ (((cls‘𝐽)‘𝑆) ⊆ 𝑆 ↔ ∀𝑥(𝑥 ∈ ((cls‘𝐽)‘𝑆) → 𝑥 ∈ 𝑆)) | |
18 | 16, 17 | syl6bbr 281 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆) ↔ ((cls‘𝐽)‘𝑆) ⊆ 𝑆)) |
19 | 9, 18 | bitr4d 274 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝑆 ∈ (Clsd‘𝐽) ↔ ∀𝑥∀𝑓((𝑓:ℕ⟶𝑆 ∧ 𝑓(⇝𝑡‘𝐽)𝑥) → 𝑥 ∈ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1599 = wceq 1601 ∃wex 1823 ∈ wcel 2107 ⊆ wss 3792 ∪ cuni 4673 class class class wbr 4888 ⟶wf 6133 ‘cfv 6137 ℕcn 11378 ∞Metcxmet 20131 MetOpencmopn 20136 Topctop 21109 Clsdccld 21232 clsccl 21234 ⇝𝑡clm 21442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-inf2 8837 ax-cc 9594 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-iin 4758 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-pm 8145 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-sup 8638 df-inf 8639 df-card 9100 df-acn 9103 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-n0 11647 df-z 11733 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-fz 12648 df-topgen 16494 df-psmet 20138 df-xmet 20139 df-bl 20141 df-mopn 20142 df-top 21110 df-topon 21127 df-bases 21162 df-cld 21235 df-ntr 21236 df-cls 21237 df-lm 21445 df-1stc 21655 |
This theorem is referenced by: metcld2 23517 |
Copyright terms: Public domain | W3C validator |