Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatfixedN Structured version   Visualization version   GIF version

Theorem lsatfixedN 35030
Description: Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 19449. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsatfixed.v 𝑉 = (Base‘𝑊)
lsatfixed.p + = (+g𝑊)
lsatfixed.o 0 = (0g𝑊)
lsatfixed.n 𝑁 = (LSpan‘𝑊)
lsatfixed.a 𝐴 = (LSAtoms‘𝑊)
lsatfixed.w (𝜑𝑊 ∈ LVec)
lsatfixed.q (𝜑𝑄𝐴)
lsatfixed.x (𝜑𝑋𝑉)
lsatfixed.y (𝜑𝑌𝑉)
lsatfixed.e (𝜑𝑄 ≠ (𝑁‘{𝑋}))
lsatfixed.f (𝜑𝑄 ≠ (𝑁‘{𝑌}))
lsatfixed.g (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lsatfixedN (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝜑,𝑧   𝑧,𝑄   𝑧,𝑉   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lsatfixedN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatfixed.q . . 3 (𝜑𝑄𝐴)
2 lsatfixed.w . . . 4 (𝜑𝑊 ∈ LVec)
3 lsatfixed.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsatfixed.n . . . . 5 𝑁 = (LSpan‘𝑊)
5 lsatfixed.o . . . . 5 0 = (0g𝑊)
6 lsatfixed.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 35012 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
91, 8mpbid 224 . 2 (𝜑 → ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}))
10 lsatfixed.p . . . . 5 + = (+g𝑊)
1123ad2ant1 1164 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LVec)
12 lsatfixed.x . . . . . 6 (𝜑𝑋𝑉)
13123ad2ant1 1164 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑋𝑉)
14 lsatfixed.y . . . . . 6 (𝜑𝑌𝑉)
15143ad2ant1 1164 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑌𝑉)
16 simp2 1168 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
17 simp3 1169 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 = (𝑁‘{𝑤}))
1817eqcomd 2805 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) = 𝑄)
19 lsatfixed.e . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑋}))
20193ad2ant1 1164 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑋}))
2118, 20eqnetrd 3038 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
223, 5, 4, 11, 16, 13, 21lspsnne1 19438 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑋}))
23 lsatfixed.f . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑌}))
24233ad2ant1 1164 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑌}))
2518, 24eqnetrd 3038 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
263, 5, 4, 11, 16, 15, 25lspsnne1 19438 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
27 lsatfixed.g . . . . . . . 8 (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
28273ad2ant1 1164 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
2918, 28eqsstrd 3835 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
30 eqid 2799 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
31 lveclmod 19427 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
322, 31syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
33323ad2ant1 1164 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LMod)
343, 30, 4, 32, 12, 14lspprcl 19299 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
35343ad2ant1 1164 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
3616eldifad 3781 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤𝑉)
373, 30, 4, 33, 35, 36lspsnel5 19316 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
3829, 37mpbird 249 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
393, 10, 5, 4, 11, 13, 15, 22, 26, 38lspfixed 19449 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}))
40 simpl1 1243 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝜑)
4140, 2syl 17 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LVec)
42 simpl2 1245 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤 ∈ (𝑉 ∖ { 0 }))
4340, 32syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LMod)
4440, 12syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑋𝑉)
4514snssd 4528 . . . . . . . . . . . 12 (𝜑 → {𝑌} ⊆ 𝑉)
463, 4lspssv 19304 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
4732, 45, 46syl2anc 580 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
4847ssdifssd 3946 . . . . . . . . . 10 (𝜑 → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
49483ad2ant1 1164 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
5049sselda 3798 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑧𝑉)
513, 10lmodvacl 19195 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑧𝑉) → (𝑋 + 𝑧) ∈ 𝑉)
5243, 44, 50, 51syl3anc 1491 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑋 + 𝑧) ∈ 𝑉)
533, 5, 4, 41, 42, 52lspsncmp 19437 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
543, 30, 4lspsncl 19298 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑧) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5543, 52, 54syl2anc 580 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5642eldifad 3781 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤𝑉)
573, 30, 4, 43, 55, 56lspsnel5 19316 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)})))
58 simpl3 1247 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑄 = (𝑁‘{𝑤}))
5958eqeq1d 2801 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
6053, 57, 593bitr4rd 304 . . . . 5 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ 𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6160rexbidva 3230 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6239, 61mpbird 249 . . 3 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
6362rexlimdv3a 3214 . 2 (𝜑 → (∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)})))
649, 63mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wrex 3090  cdif 3766  wss 3769  {csn 4368  {cpr 4370  cfv 6101  (class class class)co 6878  Basecbs 16184  +gcplusg 16267  0gc0g 16415  LModclmod 19181  LSubSpclss 19250  LSpanclspn 19292  LVecclvec 19423  LSAtomsclsa 34995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-tpos 7590  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-3 11377  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-mulr 16281  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-submnd 17651  df-grp 17741  df-minusg 17742  df-sbg 17743  df-subg 17904  df-cntz 18062  df-lsm 18364  df-cmn 18510  df-abl 18511  df-mgp 18806  df-ur 18818  df-ring 18865  df-oppr 18939  df-dvdsr 18957  df-unit 18958  df-invr 18988  df-drng 19067  df-lmod 19183  df-lss 19251  df-lsp 19293  df-lvec 19424  df-lsatoms 34997
This theorem is referenced by:  hdmaprnlem3eN  37879
  Copyright terms: Public domain W3C validator