Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatfixedN Structured version   Visualization version   GIF version

Theorem lsatfixedN 39181
Description: Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 21074. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsatfixed.v 𝑉 = (Base‘𝑊)
lsatfixed.p + = (+g𝑊)
lsatfixed.o 0 = (0g𝑊)
lsatfixed.n 𝑁 = (LSpan‘𝑊)
lsatfixed.a 𝐴 = (LSAtoms‘𝑊)
lsatfixed.w (𝜑𝑊 ∈ LVec)
lsatfixed.q (𝜑𝑄𝐴)
lsatfixed.x (𝜑𝑋𝑉)
lsatfixed.y (𝜑𝑌𝑉)
lsatfixed.e (𝜑𝑄 ≠ (𝑁‘{𝑋}))
lsatfixed.f (𝜑𝑄 ≠ (𝑁‘{𝑌}))
lsatfixed.g (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lsatfixedN (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝜑,𝑧   𝑧,𝑄   𝑧,𝑉   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lsatfixedN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatfixed.q . . 3 (𝜑𝑄𝐴)
2 lsatfixed.w . . . 4 (𝜑𝑊 ∈ LVec)
3 lsatfixed.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsatfixed.n . . . . 5 𝑁 = (LSpan‘𝑊)
5 lsatfixed.o . . . . 5 0 = (0g𝑊)
6 lsatfixed.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 39163 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}))
10 lsatfixed.p . . . . 5 + = (+g𝑊)
1123ad2ant1 1133 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LVec)
12 lsatfixed.x . . . . . 6 (𝜑𝑋𝑉)
13123ad2ant1 1133 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑋𝑉)
14 lsatfixed.y . . . . . 6 (𝜑𝑌𝑉)
15143ad2ant1 1133 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑌𝑉)
16 simp2 1137 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
17 simp3 1138 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 = (𝑁‘{𝑤}))
1817eqcomd 2739 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) = 𝑄)
19 lsatfixed.e . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑋}))
20193ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑋}))
2118, 20eqnetrd 2996 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
223, 5, 4, 11, 16, 13, 21lspsnne1 21063 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑋}))
23 lsatfixed.f . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑌}))
24233ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑌}))
2518, 24eqnetrd 2996 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
263, 5, 4, 11, 16, 15, 25lspsnne1 21063 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
27 lsatfixed.g . . . . . . . 8 (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
28273ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
2918, 28eqsstrd 3965 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
30 eqid 2733 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
31 lveclmod 21049 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
322, 31syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
33323ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LMod)
343, 30, 4, 32, 12, 14lspprcl 20920 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
35343ad2ant1 1133 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
3616eldifad 3910 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤𝑉)
373, 30, 4, 33, 35, 36ellspsn5b 20937 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
3829, 37mpbird 257 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
393, 10, 5, 4, 11, 13, 15, 22, 26, 38lspfixed 21074 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}))
40 simpl1 1192 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝜑)
4140, 2syl 17 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LVec)
42 simpl2 1193 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤 ∈ (𝑉 ∖ { 0 }))
4340, 32syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LMod)
4440, 12syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑋𝑉)
4514snssd 4762 . . . . . . . . . . . 12 (𝜑 → {𝑌} ⊆ 𝑉)
463, 4lspssv 20925 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
4732, 45, 46syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
4847ssdifssd 4096 . . . . . . . . . 10 (𝜑 → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
49483ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
5049sselda 3930 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑧𝑉)
513, 10lmodvacl 20817 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑧𝑉) → (𝑋 + 𝑧) ∈ 𝑉)
5243, 44, 50, 51syl3anc 1373 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑋 + 𝑧) ∈ 𝑉)
533, 5, 4, 41, 42, 52lspsncmp 21062 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
543, 30, 4lspsncl 20919 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑧) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5543, 52, 54syl2anc 584 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5642eldifad 3910 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤𝑉)
573, 30, 4, 43, 55, 56ellspsn5b 20937 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)})))
58 simpl3 1194 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑄 = (𝑁‘{𝑤}))
5958eqeq1d 2735 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
6053, 57, 593bitr4rd 312 . . . . 5 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ 𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6160rexbidva 3155 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6239, 61mpbird 257 . . 3 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
6362rexlimdv3a 3138 . 2 (𝜑 → (∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)})))
649, 63mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cdif 3895  wss 3898  {csn 4577  {cpr 4579  cfv 6489  (class class class)co 7355  Basecbs 17127  +gcplusg 17168  0gc0g 17350  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913  LVecclvec 21045  LSAtomsclsa 39146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-cntz 19237  df-lsm 19556  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-drng 20655  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046  df-lsatoms 39148
This theorem is referenced by:  hdmaprnlem3eN  42030
  Copyright terms: Public domain W3C validator