Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatfixedN Structured version   Visualization version   GIF version

Theorem lsatfixedN 37023
Description: Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 20390. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lsatfixed.v 𝑉 = (Base‘𝑊)
lsatfixed.p + = (+g𝑊)
lsatfixed.o 0 = (0g𝑊)
lsatfixed.n 𝑁 = (LSpan‘𝑊)
lsatfixed.a 𝐴 = (LSAtoms‘𝑊)
lsatfixed.w (𝜑𝑊 ∈ LVec)
lsatfixed.q (𝜑𝑄𝐴)
lsatfixed.x (𝜑𝑋𝑉)
lsatfixed.y (𝜑𝑌𝑉)
lsatfixed.e (𝜑𝑄 ≠ (𝑁‘{𝑋}))
lsatfixed.f (𝜑𝑄 ≠ (𝑁‘{𝑌}))
lsatfixed.g (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lsatfixedN (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝜑,𝑧   𝑧,𝑄   𝑧,𝑉   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌
Allowed substitution hint:   𝐴(𝑧)

Proof of Theorem lsatfixedN
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 lsatfixed.q . . 3 (𝜑𝑄𝐴)
2 lsatfixed.w . . . 4 (𝜑𝑊 ∈ LVec)
3 lsatfixed.v . . . . 5 𝑉 = (Base‘𝑊)
4 lsatfixed.n . . . . 5 𝑁 = (LSpan‘𝑊)
5 lsatfixed.o . . . . 5 0 = (0g𝑊)
6 lsatfixed.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 37005 . . . 4 (𝑊 ∈ LVec → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
82, 7syl 17 . . 3 (𝜑 → (𝑄𝐴 ↔ ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤})))
91, 8mpbid 231 . 2 (𝜑 → ∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}))
10 lsatfixed.p . . . . 5 + = (+g𝑊)
1123ad2ant1 1132 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LVec)
12 lsatfixed.x . . . . . 6 (𝜑𝑋𝑉)
13123ad2ant1 1132 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑋𝑉)
14 lsatfixed.y . . . . . 6 (𝜑𝑌𝑉)
15143ad2ant1 1132 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑌𝑉)
16 simp2 1136 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
17 simp3 1137 . . . . . . . 8 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 = (𝑁‘{𝑤}))
1817eqcomd 2744 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) = 𝑄)
19 lsatfixed.e . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑋}))
20193ad2ant1 1132 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑋}))
2118, 20eqnetrd 3011 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}))
223, 5, 4, 11, 16, 13, 21lspsnne1 20379 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑋}))
23 lsatfixed.f . . . . . . . 8 (𝜑𝑄 ≠ (𝑁‘{𝑌}))
24233ad2ant1 1132 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ≠ (𝑁‘{𝑌}))
2518, 24eqnetrd 3011 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
263, 5, 4, 11, 16, 15, 25lspsnne1 20379 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ¬ 𝑤 ∈ (𝑁‘{𝑌}))
27 lsatfixed.g . . . . . . . 8 (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
28273ad2ant1 1132 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))
2918, 28eqsstrd 3959 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
30 eqid 2738 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
31 lveclmod 20368 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
322, 31syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
33323ad2ant1 1132 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑊 ∈ LMod)
343, 30, 4, 32, 12, 14lspprcl 20240 . . . . . . . 8 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
35343ad2ant1 1132 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
3616eldifad 3899 . . . . . . 7 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤𝑉)
373, 30, 4, 33, 35, 36lspsnel5 20257 . . . . . 6 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
3829, 37mpbird 256 . . . . 5 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
393, 10, 5, 4, 11, 13, 15, 22, 26, 38lspfixed 20390 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}))
40 simpl1 1190 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝜑)
4140, 2syl 17 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LVec)
42 simpl2 1191 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤 ∈ (𝑉 ∖ { 0 }))
4340, 32syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑊 ∈ LMod)
4440, 12syl 17 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑋𝑉)
4514snssd 4742 . . . . . . . . . . . 12 (𝜑 → {𝑌} ⊆ 𝑉)
463, 4lspssv 20245 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑌} ⊆ 𝑉) → (𝑁‘{𝑌}) ⊆ 𝑉)
4732, 45, 46syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑌}) ⊆ 𝑉)
4847ssdifssd 4077 . . . . . . . . . 10 (𝜑 → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
49483ad2ant1 1132 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ((𝑁‘{𝑌}) ∖ { 0 }) ⊆ 𝑉)
5049sselda 3921 . . . . . . . 8 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑧𝑉)
513, 10lmodvacl 20137 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑧𝑉) → (𝑋 + 𝑧) ∈ 𝑉)
5243, 44, 50, 51syl3anc 1370 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑋 + 𝑧) ∈ 𝑉)
533, 5, 4, 41, 42, 52lspsncmp 20378 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
543, 30, 4lspsncl 20239 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑋 + 𝑧) ∈ 𝑉) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5543, 52, 54syl2anc 584 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑁‘{(𝑋 + 𝑧)}) ∈ (LSubSp‘𝑊))
5642eldifad 3899 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑤𝑉)
573, 30, 4, 43, 55, 56lspsnel5 20257 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{(𝑋 + 𝑧)})))
58 simpl3 1192 . . . . . . 7 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → 𝑄 = (𝑁‘{𝑤}))
5958eqeq1d 2740 . . . . . 6 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ (𝑁‘{𝑤}) = (𝑁‘{(𝑋 + 𝑧)})))
6053, 57, 593bitr4rd 312 . . . . 5 (((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) ∧ 𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })) → (𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ 𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6160rexbidva 3225 . . . 4 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → (∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}) ↔ ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑤 ∈ (𝑁‘{(𝑋 + 𝑧)})))
6239, 61mpbird 256 . . 3 ((𝜑𝑤 ∈ (𝑉 ∖ { 0 }) ∧ 𝑄 = (𝑁‘{𝑤})) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
6362rexlimdv3a 3215 . 2 (𝜑 → (∃𝑤 ∈ (𝑉 ∖ { 0 })𝑄 = (𝑁‘{𝑤}) → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)})))
649, 63mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LVecclvec 20364  LSAtomsclsa 36988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lvec 20365  df-lsatoms 36990
This theorem is referenced by:  hdmaprnlem3eN  39872
  Copyright terms: Public domain W3C validator