Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatn0 Structured version   Visualization version   GIF version

Theorem lsatn0 38699
Description: A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 32281 analog.) (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatn0.o 0 = (0g𝑊)
lsatn0.a 𝐴 = (LSAtoms‘𝑊)
lsatn0.w (𝜑𝑊 ∈ LMod)
lsatn0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsatn0 (𝜑𝑈 ≠ { 0 })

Proof of Theorem lsatn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatn0.u . . 3 (𝜑𝑈𝐴)
2 lsatn0.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2726 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2726 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsatn0.o . . . . 5 0 = (0g𝑊)
6 lsatn0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 38691 . . . 4 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 231 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifsn 4795 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
113, 5, 4lspsneq0 20991 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 ))
122, 11sylan 578 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 ))
1312biimpd 228 . . . . . . 7 ((𝜑𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } → 𝑣 = 0 ))
1413necon3d 2951 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝑣0 → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1514expimpd 452 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1610, 15biimtrid 241 . . . 4 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
17 neeq1 2993 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ≠ { 0 } ↔ ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1817biimprcd 249 . . . 4 (((LSpan‘𝑊)‘{𝑣}) ≠ { 0 } → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))
1916, 18syl6 35 . . 3 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 })))
2019rexlimdv 3143 . 2 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))
219, 20mpd 15 1 (𝜑𝑈 ≠ { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cdif 3944  {csn 4633  cfv 6556  Basecbs 17215  0gc0g 17456  LModclmod 20838  LSpanclspn 20950  LSAtomsclsa 38674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-minusg 18934  df-cmn 19782  df-abl 19783  df-mgp 20120  df-rng 20138  df-ur 20167  df-ring 20220  df-lmod 20840  df-lss 20911  df-lsp 20951  df-lsatoms 38676
This theorem is referenced by:  lsatspn0  38700  lsatssn0  38702  lsatcmp  38703  lsatcv0  38731  dochsat  41084  dochsatshp  41152  dochshpsat  41155  dochexmidlem1  41161
  Copyright terms: Public domain W3C validator