Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatn0 Structured version   Visualization version   GIF version

Theorem lsatn0 39121
Description: A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 32329 analog.) (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatn0.o 0 = (0g𝑊)
lsatn0.a 𝐴 = (LSAtoms‘𝑊)
lsatn0.w (𝜑𝑊 ∈ LMod)
lsatn0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsatn0 (𝜑𝑈 ≠ { 0 })

Proof of Theorem lsatn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatn0.u . . 3 (𝜑𝑈𝐴)
2 lsatn0.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2733 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2733 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsatn0.o . . . . 5 0 = (0g𝑊)
6 lsatn0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 39113 . . . 4 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifsn 4739 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
113, 5, 4lspsneq0 20949 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 ))
122, 11sylan 580 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 ))
1312biimpd 229 . . . . . . 7 ((𝜑𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } → 𝑣 = 0 ))
1413necon3d 2950 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝑣0 → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1514expimpd 453 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1610, 15biimtrid 242 . . . 4 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
17 neeq1 2991 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ≠ { 0 } ↔ ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1817biimprcd 250 . . . 4 (((LSpan‘𝑊)‘{𝑣}) ≠ { 0 } → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))
1916, 18syl6 35 . . 3 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 })))
2019rexlimdv 3132 . 2 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))
219, 20mpd 15 1 (𝜑𝑈 ≠ { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wrex 3057  cdif 3895  {csn 4577  cfv 6488  Basecbs 17124  0gc0g 17347  LModclmod 20797  LSpanclspn 20908  LSAtomsclsa 39096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lsatoms 39098
This theorem is referenced by:  lsatspn0  39122  lsatssn0  39124  lsatcmp  39125  lsatcv0  39153  dochsat  41505  dochsatshp  41573  dochshpsat  41576  dochexmidlem1  41582
  Copyright terms: Public domain W3C validator