Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatn0 Structured version   Visualization version   GIF version

Theorem lsatn0 38999
Description: A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 32281 analog.) (Contributed by NM, 25-Aug-2014.)
Hypotheses
Ref Expression
lsatn0.o 0 = (0g𝑊)
lsatn0.a 𝐴 = (LSAtoms‘𝑊)
lsatn0.w (𝜑𝑊 ∈ LMod)
lsatn0.u (𝜑𝑈𝐴)
Assertion
Ref Expression
lsatn0 (𝜑𝑈 ≠ { 0 })

Proof of Theorem lsatn0
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 lsatn0.u . . 3 (𝜑𝑈𝐴)
2 lsatn0.w . . . 4 (𝜑𝑊 ∈ LMod)
3 eqid 2730 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
4 eqid 2730 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
5 lsatn0.o . . . . 5 0 = (0g𝑊)
6 lsatn0.a . . . . 5 𝐴 = (LSAtoms‘𝑊)
73, 4, 5, 6islsat 38991 . . . 4 (𝑊 ∈ LMod → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
82, 7syl 17 . . 3 (𝜑 → (𝑈𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))
10 eldifsn 4753 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ))
113, 5, 4lspsneq0 20925 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 ))
122, 11sylan 580 . . . . . . . 8 ((𝜑𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 ))
1312biimpd 229 . . . . . . 7 ((𝜑𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } → 𝑣 = 0 ))
1413necon3d 2947 . . . . . 6 ((𝜑𝑣 ∈ (Base‘𝑊)) → (𝑣0 → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1514expimpd 453 . . . . 5 (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣0 ) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1610, 15biimtrid 242 . . . 4 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
17 neeq1 2988 . . . . 5 (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ≠ { 0 } ↔ ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 }))
1817biimprcd 250 . . . 4 (((LSpan‘𝑊)‘{𝑣}) ≠ { 0 } → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))
1916, 18syl6 35 . . 3 (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 })))
2019rexlimdv 3133 . 2 (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))
219, 20mpd 15 1 (𝜑𝑈 ≠ { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cdif 3914  {csn 4592  cfv 6514  Basecbs 17186  0gc0g 17409  LModclmod 20773  LSpanclspn 20884  LSAtomsclsa 38974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lsatoms 38976
This theorem is referenced by:  lsatspn0  39000  lsatssn0  39002  lsatcmp  39003  lsatcv0  39031  dochsat  41384  dochsatshp  41452  dochshpsat  41455  dochexmidlem1  41461
  Copyright terms: Public domain W3C validator