Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsatn0 | Structured version Visualization version GIF version |
Description: A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 30996 analog.) (Contributed by NM, 25-Aug-2014.) |
Ref | Expression |
---|---|
lsatn0.o | ⊢ 0 = (0g‘𝑊) |
lsatn0.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lsatn0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsatn0.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
Ref | Expression |
---|---|
lsatn0 | ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsatn0.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
2 | lsatn0.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
4 | eqid 2736 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
5 | lsatn0.o | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
6 | lsatn0.a | . . . . 5 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
7 | 3, 4, 5, 6 | islsat 37309 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
8 | 2, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∈ 𝐴 ↔ ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}))) |
9 | 1, 8 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣})) |
10 | eldifsn 4735 | . . . . 5 ⊢ (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 )) | |
11 | 3, 5, 4 | lspsneq0 20381 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 )) |
12 | 2, 11 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } ↔ 𝑣 = 0 )) |
13 | 12 | biimpd 228 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑣}) = { 0 } → 𝑣 = 0 )) |
14 | 13 | necon3d 2961 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑣 ∈ (Base‘𝑊)) → (𝑣 ≠ 0 → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 })) |
15 | 14 | expimpd 454 | . . . . 5 ⊢ (𝜑 → ((𝑣 ∈ (Base‘𝑊) ∧ 𝑣 ≠ 0 ) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 })) |
16 | 10, 15 | biimtrid 241 | . . . 4 ⊢ (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 })) |
17 | neeq1 3003 | . . . . 5 ⊢ (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → (𝑈 ≠ { 0 } ↔ ((LSpan‘𝑊)‘{𝑣}) ≠ { 0 })) | |
18 | 17 | biimprcd 249 | . . . 4 ⊢ (((LSpan‘𝑊)‘{𝑣}) ≠ { 0 } → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 })) |
19 | 16, 18 | syl6 35 | . . 3 ⊢ (𝜑 → (𝑣 ∈ ((Base‘𝑊) ∖ { 0 }) → (𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 }))) |
20 | 19 | rexlimdv 3146 | . 2 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑣}) → 𝑈 ≠ { 0 })) |
21 | 9, 20 | mpd 15 | 1 ⊢ (𝜑 → 𝑈 ≠ { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 ∖ cdif 3895 {csn 4574 ‘cfv 6480 Basecbs 17010 0gc0g 17248 LModclmod 20230 LSpanclspn 20340 LSAtomsclsa 37292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-plusg 17073 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-mgp 19817 df-ring 19881 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lsatoms 37294 |
This theorem is referenced by: lsatspn0 37318 lsatssn0 37320 lsatcmp 37321 lsatcv0 37349 dochsat 39702 dochsatshp 39770 dochshpsat 39773 dochexmidlem1 39779 |
Copyright terms: Public domain | W3C validator |