Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihlatat | Structured version Visualization version GIF version |
Description: The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.) |
Ref | Expression |
---|---|
dihlatat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
dihlatat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dihlatat.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dihlatat.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
dihlatat.l | ⊢ 𝐿 = (LSAtoms‘𝑈) |
Ref | Expression |
---|---|
dihlatat | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐿) → (◡𝐼‘𝑄) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dihlatat.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dihlatat.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | id 22 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | dvhlvec 38678 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑈 ∈ LVec) |
5 | eqid 2759 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
6 | eqid 2759 | . . . . 5 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
7 | eqid 2759 | . . . . 5 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
8 | dihlatat.l | . . . . 5 ⊢ 𝐿 = (LSAtoms‘𝑈) | |
9 | 5, 6, 7, 8 | islsat 36560 | . . . 4 ⊢ (𝑈 ∈ LVec → (𝑄 ∈ 𝐿 ↔ ∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣}))) |
10 | 4, 9 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑄 ∈ 𝐿 ↔ ∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣}))) |
11 | 10 | biimpa 481 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐿) → ∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣})) |
12 | eldifsn 4678 | . . . . . 6 ⊢ (𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)}) ↔ (𝑣 ∈ (Base‘𝑈) ∧ 𝑣 ≠ (0g‘𝑈))) | |
13 | dihlatat.a | . . . . . . . 8 ⊢ 𝐴 = (Atoms‘𝐾) | |
14 | dihlatat.i | . . . . . . . 8 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
15 | 13, 1, 2, 5, 7, 6, 14 | dihlspsnat 38902 | . . . . . . 7 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ (Base‘𝑈) ∧ 𝑣 ≠ (0g‘𝑈)) → (◡𝐼‘((LSpan‘𝑈)‘{𝑣})) ∈ 𝐴) |
16 | 15 | 3expb 1118 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑣 ∈ (Base‘𝑈) ∧ 𝑣 ≠ (0g‘𝑈))) → (◡𝐼‘((LSpan‘𝑈)‘{𝑣})) ∈ 𝐴) |
17 | 12, 16 | sylan2b 597 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})) → (◡𝐼‘((LSpan‘𝑈)‘{𝑣})) ∈ 𝐴) |
18 | fveq2 6659 | . . . . . 6 ⊢ (𝑄 = ((LSpan‘𝑈)‘{𝑣}) → (◡𝐼‘𝑄) = (◡𝐼‘((LSpan‘𝑈)‘{𝑣}))) | |
19 | 18 | eleq1d 2837 | . . . . 5 ⊢ (𝑄 = ((LSpan‘𝑈)‘{𝑣}) → ((◡𝐼‘𝑄) ∈ 𝐴 ↔ (◡𝐼‘((LSpan‘𝑈)‘{𝑣})) ∈ 𝐴)) |
20 | 17, 19 | syl5ibrcom 250 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})) → (𝑄 = ((LSpan‘𝑈)‘{𝑣}) → (◡𝐼‘𝑄) ∈ 𝐴)) |
21 | 20 | rexlimdva 3209 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣}) → (◡𝐼‘𝑄) ∈ 𝐴)) |
22 | 21 | adantr 485 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐿) → (∃𝑣 ∈ ((Base‘𝑈) ∖ {(0g‘𝑈)})𝑄 = ((LSpan‘𝑈)‘{𝑣}) → (◡𝐼‘𝑄) ∈ 𝐴)) |
23 | 11, 22 | mpd 15 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑄 ∈ 𝐿) → (◡𝐼‘𝑄) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 ∃wrex 3072 ∖ cdif 3856 {csn 4523 ◡ccnv 5524 ‘cfv 6336 Basecbs 16534 0gc0g 16764 LSpanclspn 19804 LVecclvec 19935 LSAtomsclsa 36543 Atomscatm 36832 HLchlt 36919 LHypclh 37553 DVecHcdvh 38647 DIsoHcdih 38797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-riotaBAD 36522 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-iin 4887 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-tpos 7903 df-undef 7950 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-sets 16541 df-ress 16542 df-plusg 16629 df-mulr 16630 df-sca 16632 df-vsca 16633 df-0g 16766 df-proset 17597 df-poset 17615 df-plt 17627 df-lub 17643 df-glb 17644 df-join 17645 df-meet 17646 df-p0 17708 df-p1 17709 df-lat 17715 df-clat 17777 df-mgm 17911 df-sgrp 17960 df-mnd 17971 df-submnd 18016 df-grp 18165 df-minusg 18166 df-sbg 18167 df-subg 18336 df-cntz 18507 df-lsm 18821 df-cmn 18968 df-abl 18969 df-mgp 19301 df-ur 19313 df-ring 19360 df-oppr 19437 df-dvdsr 19455 df-unit 19456 df-invr 19486 df-dvr 19497 df-drng 19565 df-lmod 19697 df-lss 19765 df-lsp 19805 df-lvec 19936 df-lsatoms 36545 df-oposet 36745 df-ol 36747 df-oml 36748 df-covers 36835 df-ats 36836 df-atl 36867 df-cvlat 36891 df-hlat 36920 df-llines 37067 df-lplanes 37068 df-lvols 37069 df-lines 37070 df-psubsp 37072 df-pmap 37073 df-padd 37365 df-lhyp 37557 df-laut 37558 df-ldil 37673 df-ltrn 37674 df-trl 37728 df-tendo 38324 df-edring 38326 df-disoa 38598 df-dvech 38648 df-dib 38708 df-dic 38742 df-dih 38798 |
This theorem is referenced by: dihatexv 38907 dihjat4 39002 dvh4dimat 39007 |
Copyright terms: Public domain | W3C validator |