MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss4 Structured version   Visualization version   GIF version

Theorem islss4 20983
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
islss4.f 𝐹 = (Scalar‘𝑊)
islss4.b 𝐵 = (Base‘𝐹)
islss4.v 𝑉 = (Base‘𝑊)
islss4.t · = ( ·𝑠𝑊)
islss4.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Distinct variable groups:   𝐹,𝑎,𝑏   𝑊,𝑎,𝑏   𝐵,𝑎,𝑏   𝑉,𝑎,𝑏   · ,𝑎,𝑏   𝑆,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem islss4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 islss4.s . . . 4 𝑆 = (LSubSp‘𝑊)
21lsssubg 20978 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
3 islss4.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 islss4.t . . . . 5 · = ( ·𝑠𝑊)
5 islss4.b . . . . 5 𝐵 = (Base‘𝐹)
63, 4, 5, 1lssvscl 20976 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎𝐵𝑏𝑈)) → (𝑎 · 𝑏) ∈ 𝑈)
76ralrimivva 3208 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)
82, 7jca 511 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈))
9 islss4.v . . . . 5 𝑉 = (Base‘𝑊)
109subgss 19167 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈𝑉)
1110ad2antrl 727 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑉)
12 eqid 2740 . . . . . 6 (0g𝑊) = (0g𝑊)
1312subg0cl 19174 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → (0g𝑊) ∈ 𝑈)
1413ne0d 4365 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ≠ ∅)
1514ad2antrl 727 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ≠ ∅)
16 eqid 2740 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
1716subgcl 19176 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈𝑐𝑈) → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
18173exp 1119 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
1918adantl 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2019ralrimdv 3158 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2120ralimdv 3175 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2221ralimdv 3175 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2322impr 454 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
243, 5, 9, 16, 4, 1islss 20955 . . 3 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2511, 15, 23, 24syl3anbrc 1343 . 2 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑆)
268, 25impbida 800 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  SubGrpcsubg 19160  LModclmod 20880  LSubSpclss 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953
This theorem is referenced by:  lssacs  20988  lmhmima  21069  lmhmpreima  21070  lmhmeql  21077  lsmcl  21105  dsmmlss  21787  issubassa2  21935  mplind  22117  mhplss  22182  fedgmullem2  33643
  Copyright terms: Public domain W3C validator