MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss4 Structured version   Visualization version   GIF version

Theorem islss4 20805
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
islss4.f 𝐹 = (Scalar‘𝑊)
islss4.b 𝐵 = (Base‘𝐹)
islss4.v 𝑉 = (Base‘𝑊)
islss4.t · = ( ·𝑠𝑊)
islss4.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss4 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Distinct variable groups:   𝐹,𝑎,𝑏   𝑊,𝑎,𝑏   𝐵,𝑎,𝑏   𝑉,𝑎,𝑏   · ,𝑎,𝑏   𝑆,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem islss4
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 islss4.s . . . 4 𝑆 = (LSubSp‘𝑊)
21lsssubg 20800 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
3 islss4.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 islss4.t . . . . 5 · = ( ·𝑠𝑊)
5 islss4.b . . . . 5 𝐵 = (Base‘𝐹)
63, 4, 5, 1lssvscl 20798 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎𝐵𝑏𝑈)) → (𝑎 · 𝑏) ∈ 𝑈)
76ralrimivva 3199 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)
82, 7jca 511 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈))
9 islss4.v . . . . 5 𝑉 = (Base‘𝑊)
109subgss 19050 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈𝑉)
1110ad2antrl 725 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑉)
12 eqid 2731 . . . . . 6 (0g𝑊) = (0g𝑊)
1312subg0cl 19057 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → (0g𝑊) ∈ 𝑈)
1413ne0d 4335 . . . 4 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ≠ ∅)
1514ad2antrl 725 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ≠ ∅)
16 eqid 2731 . . . . . . . . . 10 (+g𝑊) = (+g𝑊)
1716subgcl 19059 . . . . . . . . 9 ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈𝑐𝑈) → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
18173exp 1118 . . . . . . . 8 (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
1918adantl 481 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐𝑈 → ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)))
2019ralrimdv 3151 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2120ralimdv 3168 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2221ralimdv 3168 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2322impr 454 . . 3 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈)
243, 5, 9, 16, 4, 1islss 20777 . . 3 (𝑈𝑆 ↔ (𝑈𝑉𝑈 ≠ ∅ ∧ ∀𝑎𝐵𝑏𝑈𝑐𝑈 ((𝑎 · 𝑏)(+g𝑊)𝑐) ∈ 𝑈))
2511, 15, 23, 24syl3anbrc 1342 . 2 ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈𝑆)
268, 25impbida 798 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎𝐵𝑏𝑈 (𝑎 · 𝑏) ∈ 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1540  wcel 2105  wne 2939  wral 3060  wss 3948  c0 4322  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  SubGrpcsubg 19043  LModclmod 20702  LSubSpclss 20774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-sbg 18866  df-subg 19046  df-mgp 20036  df-ur 20083  df-ring 20136  df-lmod 20704  df-lss 20775
This theorem is referenced by:  lssacs  20810  lmhmima  20891  lmhmpreima  20892  lmhmeql  20899  lsmcl  20927  dsmmlss  21610  issubassa2  21757  mplind  21943  mhplss  22008  fedgmullem2  33171
  Copyright terms: Public domain W3C validator