![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islss4 | Structured version Visualization version GIF version |
Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
islss4.f | ⊢ 𝐹 = (Scalar‘𝑊) |
islss4.b | ⊢ 𝐵 = (Base‘𝐹) |
islss4.v | ⊢ 𝑉 = (Base‘𝑊) |
islss4.t | ⊢ · = ( ·𝑠 ‘𝑊) |
islss4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
islss4 | ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islss4.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lsssubg 20978 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
3 | islss4.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | islss4.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
5 | islss4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
6 | 3, 4, 5, 1 | lssvscl 20976 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝑈)) → (𝑎 · 𝑏) ∈ 𝑈) |
7 | 6 | ralrimivva 3208 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈) |
8 | 2, 7 | jca 511 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) |
9 | islss4.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
10 | 9 | subgss 19167 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ 𝑉) |
11 | 10 | ad2antrl 727 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ⊆ 𝑉) |
12 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
13 | 12 | subg0cl 19174 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → (0g‘𝑊) ∈ 𝑈) |
14 | 13 | ne0d 4365 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ≠ ∅) |
15 | 14 | ad2antrl 727 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ≠ ∅) |
16 | eqid 2740 | . . . . . . . . . 10 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
17 | 16 | subgcl 19176 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈 ∧ 𝑐 ∈ 𝑈) → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
18 | 17 | 3exp 1119 | . . . . . . . 8 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
20 | 19 | ralrimdv 3158 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
21 | 20 | ralimdv 3175 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
22 | 21 | ralimdv 3175 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
23 | 22 | impr 454 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
24 | 3, 5, 9, 16, 4, 1 | islss 20955 | . . 3 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
25 | 11, 15, 23, 24 | syl3anbrc 1343 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ∈ 𝑆) |
26 | 8, 25 | impbida 800 | 1 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 SubGrpcsubg 19160 LModclmod 20880 LSubSpclss 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 |
This theorem is referenced by: lssacs 20988 lmhmima 21069 lmhmpreima 21070 lmhmeql 21077 lsmcl 21105 dsmmlss 21787 issubassa2 21935 mplind 22117 mhplss 22182 fedgmullem2 33643 |
Copyright terms: Public domain | W3C validator |