| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islss4 | Structured version Visualization version GIF version | ||
| Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| islss4.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| islss4.b | ⊢ 𝐵 = (Base‘𝐹) |
| islss4.v | ⊢ 𝑉 = (Base‘𝑊) |
| islss4.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| islss4.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| islss4 | ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islss4.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | 1 | lsssubg 20891 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 3 | islss4.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | islss4.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | islss4.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐹) | |
| 6 | 3, 4, 5, 1 | lssvscl 20889 | . . . 4 ⊢ (((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝑈)) → (𝑎 · 𝑏) ∈ 𝑈) |
| 7 | 6 | ralrimivva 3175 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈) |
| 8 | 2, 7 | jca 511 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) |
| 9 | islss4.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 10 | 9 | subgss 19040 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ⊆ 𝑉) |
| 11 | 10 | ad2antrl 728 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ⊆ 𝑉) |
| 12 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 13 | 12 | subg0cl 19047 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → (0g‘𝑊) ∈ 𝑈) |
| 14 | 13 | ne0d 4292 | . . . 4 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 ≠ ∅) |
| 15 | 14 | ad2antrl 728 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ≠ ∅) |
| 16 | eqid 2731 | . . . . . . . . . 10 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 17 | 16 | subgcl 19049 | . . . . . . . . 9 ⊢ ((𝑈 ∈ (SubGrp‘𝑊) ∧ (𝑎 · 𝑏) ∈ 𝑈 ∧ 𝑐 ∈ 𝑈) → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
| 18 | 17 | 3exp 1119 | . . . . . . . 8 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
| 19 | 18 | adantl 481 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → (𝑐 ∈ 𝑈 → ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈))) |
| 20 | 19 | ralrimdv 3130 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → ((𝑎 · 𝑏) ∈ 𝑈 → ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
| 21 | 20 | ralimdv 3146 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
| 22 | 21 | ralimdv 3146 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈 → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
| 23 | 22 | impr 454 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈) |
| 24 | 3, 5, 9, 16, 4, 1 | islss 20868 | . . 3 ⊢ (𝑈 ∈ 𝑆 ↔ (𝑈 ⊆ 𝑉 ∧ 𝑈 ≠ ∅ ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 ∀𝑐 ∈ 𝑈 ((𝑎 · 𝑏)(+g‘𝑊)𝑐) ∈ 𝑈)) |
| 25 | 11, 15, 23, 24 | syl3anbrc 1344 | . 2 ⊢ ((𝑊 ∈ LMod ∧ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈)) → 𝑈 ∈ 𝑆) |
| 26 | 8, 25 | impbida 800 | 1 ⊢ (𝑊 ∈ LMod → (𝑈 ∈ 𝑆 ↔ (𝑈 ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝑈 (𝑎 · 𝑏) ∈ 𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 ∅c0 4283 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 SubGrpcsubg 19033 LModclmod 20794 LSubSpclss 20865 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-mgp 20060 df-ur 20101 df-ring 20154 df-lmod 20796 df-lss 20866 |
| This theorem is referenced by: lssacs 20901 lmhmima 20982 lmhmpreima 20983 lmhmeql 20990 lsmcl 21018 dsmmlss 21682 issubassa2 21830 mplind 22006 mhplss 22071 fedgmullem2 33641 |
| Copyright terms: Public domain | W3C validator |