MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmd0 Structured version   Visualization version   GIF version

Theorem frmd0 18527
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmd0 ∅ = (0g𝑀)

Proof of Theorem frmd0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2733 . . 3 (0g𝑀) = (0g𝑀)
3 eqid 2733 . . 3 (+g𝑀) = (+g𝑀)
4 wrd0 14270 . . . 4 ∅ ∈ Word 𝐼
5 frmdmnd.m . . . . 5 𝑀 = (freeMnd‘𝐼)
65, 1frmdbas 18519 . . . 4 (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼)
74, 6eleqtrrid 2841 . . 3 (𝐼 ∈ V → ∅ ∈ (Base‘𝑀))
85, 1, 3frmdadd 18522 . . . . 5 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
97, 8sylan 579 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
105, 1frmdelbas 18520 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
1110adantl 481 . . . . 5 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
12 ccatlid 14319 . . . . 5 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
1311, 12syl 17 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
149, 13eqtrd 2773 . . 3 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
155, 1, 3frmdadd 18522 . . . . . 6 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
1615ancoms 458 . . . . 5 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
177, 16sylan 579 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
18 ccatrid 14320 . . . . 5 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
1911, 18syl 17 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
2017, 19eqtrd 2773 . . 3 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
211, 2, 3, 7, 14, 20ismgmid2 18380 . 2 (𝐼 ∈ V → ∅ = (0g𝑀))
22 0g0 18376 . . 3 ∅ = (0g‘∅)
23 fvprc 6784 . . . . 5 𝐼 ∈ V → (freeMnd‘𝐼) = ∅)
245, 23eqtrid 2785 . . . 4 𝐼 ∈ V → 𝑀 = ∅)
2524fveq2d 6796 . . 3 𝐼 ∈ V → (0g𝑀) = (0g‘∅))
2622, 25eqtr4id 2792 . 2 𝐼 ∈ V → ∅ = (0g𝑀))
2721, 26pm2.61i 182 1 ∅ = (0g𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wcel 2101  Vcvv 3434  c0 4259  cfv 6447  (class class class)co 7295  Word cword 14245   ++ cconcat 14301  Basecbs 16940  +gcplusg 16990  0gc0g 17178  freeMndcfrmd 18514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-int 4883  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-1o 8317  df-er 8518  df-map 8637  df-en 8754  df-dom 8755  df-sdom 8756  df-fin 8757  df-card 9725  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-nn 12002  df-2 12064  df-n0 12262  df-z 12348  df-uz 12611  df-fz 13268  df-fzo 13411  df-hash 14073  df-word 14246  df-concat 14302  df-struct 16876  df-slot 16911  df-ndx 16923  df-base 16941  df-plusg 17003  df-0g 17180  df-frmd 18516
This theorem is referenced by:  frmdsssubm  18528  frmdgsum  18529  frmdup1  18531  frgpmhm  19399  mrsub0  33506  elmrsubrn  33510
  Copyright terms: Public domain W3C validator