| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmd0 | Structured version Visualization version GIF version | ||
| Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| Ref | Expression |
|---|---|
| frmd0 | ⊢ ∅ = (0g‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2736 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 3 | eqid 2736 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 4 | wrd0 14562 | . . . 4 ⊢ ∅ ∈ Word 𝐼 | |
| 5 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
| 6 | 5, 1 | frmdbas 18835 | . . . 4 ⊢ (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼) |
| 7 | 4, 6 | eleqtrrid 2842 | . . 3 ⊢ (𝐼 ∈ V → ∅ ∈ (Base‘𝑀)) |
| 8 | 5, 1, 3 | frmdadd 18838 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
| 9 | 7, 8 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
| 10 | 5, 1 | frmdelbas 18836 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼) |
| 12 | ccatlid 14609 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥) |
| 14 | 9, 13 | eqtrd 2771 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = 𝑥) |
| 15 | 5, 1, 3 | frmdadd 18838 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
| 16 | 15 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
| 17 | 7, 16 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
| 18 | ccatrid 14610 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥) | |
| 19 | 11, 18 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥) |
| 20 | 17, 19 | eqtrd 2771 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = 𝑥) |
| 21 | 1, 2, 3, 7, 14, 20 | ismgmid2 18651 | . 2 ⊢ (𝐼 ∈ V → ∅ = (0g‘𝑀)) |
| 22 | 0g0 18647 | . . 3 ⊢ ∅ = (0g‘∅) | |
| 23 | fvprc 6873 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (freeMnd‘𝐼) = ∅) | |
| 24 | 5, 23 | eqtrid 2783 | . . . 4 ⊢ (¬ 𝐼 ∈ V → 𝑀 = ∅) |
| 25 | 24 | fveq2d 6885 | . . 3 ⊢ (¬ 𝐼 ∈ V → (0g‘𝑀) = (0g‘∅)) |
| 26 | 22, 25 | eqtr4id 2790 | . 2 ⊢ (¬ 𝐼 ∈ V → ∅ = (0g‘𝑀)) |
| 27 | 21, 26 | pm2.61i 182 | 1 ⊢ ∅ = (0g‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 ‘cfv 6536 (class class class)co 7410 Word cword 14536 ++ cconcat 14593 Basecbs 17233 +gcplusg 17276 0gc0g 17458 freeMndcfrmd 18830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-hash 14354 df-word 14537 df-concat 14594 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-frmd 18832 |
| This theorem is referenced by: frmdsssubm 18844 frmdgsum 18845 frmdup1 18847 frgpmhm 19751 mrsub0 35543 elmrsubrn 35547 |
| Copyright terms: Public domain | W3C validator |