Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmd0 | Structured version Visualization version GIF version |
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmd0 | ⊢ ∅ = (0g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2736 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2736 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
4 | wrd0 14320 | . . . 4 ⊢ ∅ ∈ Word 𝐼 | |
5 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
6 | 5, 1 | frmdbas 18564 | . . . 4 ⊢ (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼) |
7 | 4, 6 | eleqtrrid 2844 | . . 3 ⊢ (𝐼 ∈ V → ∅ ∈ (Base‘𝑀)) |
8 | 5, 1, 3 | frmdadd 18567 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
9 | 7, 8 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
10 | 5, 1 | frmdelbas 18565 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼) |
11 | 10 | adantl 482 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼) |
12 | ccatlid 14368 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥) |
14 | 9, 13 | eqtrd 2776 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = 𝑥) |
15 | 5, 1, 3 | frmdadd 18567 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
16 | 15 | ancoms 459 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
17 | 7, 16 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
18 | ccatrid 14369 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥) | |
19 | 11, 18 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥) |
20 | 17, 19 | eqtrd 2776 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = 𝑥) |
21 | 1, 2, 3, 7, 14, 20 | ismgmid2 18426 | . 2 ⊢ (𝐼 ∈ V → ∅ = (0g‘𝑀)) |
22 | 0g0 18422 | . . 3 ⊢ ∅ = (0g‘∅) | |
23 | fvprc 6803 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (freeMnd‘𝐼) = ∅) | |
24 | 5, 23 | eqtrid 2788 | . . . 4 ⊢ (¬ 𝐼 ∈ V → 𝑀 = ∅) |
25 | 24 | fveq2d 6815 | . . 3 ⊢ (¬ 𝐼 ∈ V → (0g‘𝑀) = (0g‘∅)) |
26 | 22, 25 | eqtr4id 2795 | . 2 ⊢ (¬ 𝐼 ∈ V → ∅ = (0g‘𝑀)) |
27 | 21, 26 | pm2.61i 182 | 1 ⊢ ∅ = (0g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 ∅c0 4266 ‘cfv 6465 (class class class)co 7316 Word cword 14295 ++ cconcat 14351 Basecbs 16986 +gcplusg 17036 0gc0g 17224 freeMndcfrmd 18559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-hash 14124 df-word 14296 df-concat 14352 df-struct 16922 df-slot 16957 df-ndx 16969 df-base 16987 df-plusg 17049 df-0g 17226 df-frmd 18561 |
This theorem is referenced by: frmdsssubm 18573 frmdgsum 18574 frmdup1 18576 frgpmhm 19443 mrsub0 33613 elmrsubrn 33617 |
Copyright terms: Public domain | W3C validator |