Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frmd0 | Structured version Visualization version GIF version |
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
Ref | Expression |
---|---|
frmd0 | ⊢ ∅ = (0g‘𝑀) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
2 | eqid 2733 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
3 | eqid 2733 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
4 | wrd0 14270 | . . . 4 ⊢ ∅ ∈ Word 𝐼 | |
5 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
6 | 5, 1 | frmdbas 18519 | . . . 4 ⊢ (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼) |
7 | 4, 6 | eleqtrrid 2841 | . . 3 ⊢ (𝐼 ∈ V → ∅ ∈ (Base‘𝑀)) |
8 | 5, 1, 3 | frmdadd 18522 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
9 | 7, 8 | sylan 579 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
10 | 5, 1 | frmdelbas 18520 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼) |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼) |
12 | ccatlid 14319 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥) |
14 | 9, 13 | eqtrd 2773 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = 𝑥) |
15 | 5, 1, 3 | frmdadd 18522 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
16 | 15 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
17 | 7, 16 | sylan 579 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
18 | ccatrid 14320 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥) | |
19 | 11, 18 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥) |
20 | 17, 19 | eqtrd 2773 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = 𝑥) |
21 | 1, 2, 3, 7, 14, 20 | ismgmid2 18380 | . 2 ⊢ (𝐼 ∈ V → ∅ = (0g‘𝑀)) |
22 | 0g0 18376 | . . 3 ⊢ ∅ = (0g‘∅) | |
23 | fvprc 6784 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (freeMnd‘𝐼) = ∅) | |
24 | 5, 23 | eqtrid 2785 | . . . 4 ⊢ (¬ 𝐼 ∈ V → 𝑀 = ∅) |
25 | 24 | fveq2d 6796 | . . 3 ⊢ (¬ 𝐼 ∈ V → (0g‘𝑀) = (0g‘∅)) |
26 | 22, 25 | eqtr4id 2792 | . 2 ⊢ (¬ 𝐼 ∈ V → ∅ = (0g‘𝑀)) |
27 | 21, 26 | pm2.61i 182 | 1 ⊢ ∅ = (0g‘𝑀) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2101 Vcvv 3434 ∅c0 4259 ‘cfv 6447 (class class class)co 7295 Word cword 14245 ++ cconcat 14301 Basecbs 16940 +gcplusg 16990 0gc0g 17178 freeMndcfrmd 18514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-1o 8317 df-er 8518 df-map 8637 df-en 8754 df-dom 8755 df-sdom 8756 df-fin 8757 df-card 9725 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-fz 13268 df-fzo 13411 df-hash 14073 df-word 14246 df-concat 14302 df-struct 16876 df-slot 16911 df-ndx 16923 df-base 16941 df-plusg 17003 df-0g 17180 df-frmd 18516 |
This theorem is referenced by: frmdsssubm 18528 frmdgsum 18529 frmdup1 18531 frgpmhm 19399 mrsub0 33506 elmrsubrn 33510 |
Copyright terms: Public domain | W3C validator |