MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmd0 Structured version   Visualization version   GIF version

Theorem frmd0 18572
Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypothesis
Ref Expression
frmdmnd.m 𝑀 = (freeMnd‘𝐼)
Assertion
Ref Expression
frmd0 ∅ = (0g𝑀)

Proof of Theorem frmd0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2736 . . 3 (0g𝑀) = (0g𝑀)
3 eqid 2736 . . 3 (+g𝑀) = (+g𝑀)
4 wrd0 14320 . . . 4 ∅ ∈ Word 𝐼
5 frmdmnd.m . . . . 5 𝑀 = (freeMnd‘𝐼)
65, 1frmdbas 18564 . . . 4 (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼)
74, 6eleqtrrid 2844 . . 3 (𝐼 ∈ V → ∅ ∈ (Base‘𝑀))
85, 1, 3frmdadd 18567 . . . . 5 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
97, 8sylan 580 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = (∅ ++ 𝑥))
105, 1frmdelbas 18565 . . . . . 6 (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼)
1110adantl 482 . . . . 5 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼)
12 ccatlid 14368 . . . . 5 (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥)
1311, 12syl 17 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥)
149, 13eqtrd 2776 . . 3 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g𝑀)𝑥) = 𝑥)
155, 1, 3frmdadd 18567 . . . . . 6 ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
1615ancoms 459 . . . . 5 ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
177, 16sylan 580 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = (𝑥 ++ ∅))
18 ccatrid 14369 . . . . 5 (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥)
1911, 18syl 17 . . . 4 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥)
2017, 19eqtrd 2776 . . 3 ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g𝑀)∅) = 𝑥)
211, 2, 3, 7, 14, 20ismgmid2 18426 . 2 (𝐼 ∈ V → ∅ = (0g𝑀))
22 0g0 18422 . . 3 ∅ = (0g‘∅)
23 fvprc 6803 . . . . 5 𝐼 ∈ V → (freeMnd‘𝐼) = ∅)
245, 23eqtrid 2788 . . . 4 𝐼 ∈ V → 𝑀 = ∅)
2524fveq2d 6815 . . 3 𝐼 ∈ V → (0g𝑀) = (0g‘∅))
2622, 25eqtr4id 2795 . 2 𝐼 ∈ V → ∅ = (0g𝑀))
2721, 26pm2.61i 182 1 ∅ = (0g𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1540  wcel 2105  Vcvv 3440  c0 4266  cfv 6465  (class class class)co 7316  Word cword 14295   ++ cconcat 14351  Basecbs 16986  +gcplusg 17036  0gc0g 17224  freeMndcfrmd 18559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-map 8666  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-fzo 13462  df-hash 14124  df-word 14296  df-concat 14352  df-struct 16922  df-slot 16957  df-ndx 16969  df-base 16987  df-plusg 17049  df-0g 17226  df-frmd 18561
This theorem is referenced by:  frmdsssubm  18573  frmdgsum  18574  frmdup1  18576  frgpmhm  19443  mrsub0  33613  elmrsubrn  33617
  Copyright terms: Public domain W3C validator