| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frmd0 | Structured version Visualization version GIF version | ||
| Description: The identity of the free monoid is the empty word. (Contributed by Mario Carneiro, 27-Sep-2015.) |
| Ref | Expression |
|---|---|
| frmdmnd.m | ⊢ 𝑀 = (freeMnd‘𝐼) |
| Ref | Expression |
|---|---|
| frmd0 | ⊢ ∅ = (0g‘𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2729 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 3 | eqid 2729 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 4 | wrd0 14446 | . . . 4 ⊢ ∅ ∈ Word 𝐼 | |
| 5 | frmdmnd.m | . . . . 5 ⊢ 𝑀 = (freeMnd‘𝐼) | |
| 6 | 5, 1 | frmdbas 18726 | . . . 4 ⊢ (𝐼 ∈ V → (Base‘𝑀) = Word 𝐼) |
| 7 | 4, 6 | eleqtrrid 2835 | . . 3 ⊢ (𝐼 ∈ V → ∅ ∈ (Base‘𝑀)) |
| 8 | 5, 1, 3 | frmdadd 18729 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
| 9 | 7, 8 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = (∅ ++ 𝑥)) |
| 10 | 5, 1 | frmdelbas 18727 | . . . . . 6 ⊢ (𝑥 ∈ (Base‘𝑀) → 𝑥 ∈ Word 𝐼) |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥 ∈ Word 𝐼) |
| 12 | ccatlid 14493 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (∅ ++ 𝑥) = 𝑥) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅ ++ 𝑥) = 𝑥) |
| 14 | 9, 13 | eqtrd 2764 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (∅(+g‘𝑀)𝑥) = 𝑥) |
| 15 | 5, 1, 3 | frmdadd 18729 | . . . . . 6 ⊢ ((𝑥 ∈ (Base‘𝑀) ∧ ∅ ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
| 16 | 15 | ancoms 458 | . . . . 5 ⊢ ((∅ ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
| 17 | 7, 16 | sylan 580 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = (𝑥 ++ ∅)) |
| 18 | ccatrid 14494 | . . . . 5 ⊢ (𝑥 ∈ Word 𝐼 → (𝑥 ++ ∅) = 𝑥) | |
| 19 | 11, 18 | syl 17 | . . . 4 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 ++ ∅) = 𝑥) |
| 20 | 17, 19 | eqtrd 2764 | . . 3 ⊢ ((𝐼 ∈ V ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥(+g‘𝑀)∅) = 𝑥) |
| 21 | 1, 2, 3, 7, 14, 20 | ismgmid2 18542 | . 2 ⊢ (𝐼 ∈ V → ∅ = (0g‘𝑀)) |
| 22 | 0g0 18538 | . . 3 ⊢ ∅ = (0g‘∅) | |
| 23 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝐼 ∈ V → (freeMnd‘𝐼) = ∅) | |
| 24 | 5, 23 | eqtrid 2776 | . . . 4 ⊢ (¬ 𝐼 ∈ V → 𝑀 = ∅) |
| 25 | 24 | fveq2d 6826 | . . 3 ⊢ (¬ 𝐼 ∈ V → (0g‘𝑀) = (0g‘∅)) |
| 26 | 22, 25 | eqtr4id 2783 | . 2 ⊢ (¬ 𝐼 ∈ V → ∅ = (0g‘𝑀)) |
| 27 | 21, 26 | pm2.61i 182 | 1 ⊢ ∅ = (0g‘𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 ‘cfv 6482 (class class class)co 7349 Word cword 14420 ++ cconcat 14477 Basecbs 17120 +gcplusg 17161 0gc0g 17343 freeMndcfrmd 18721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-hash 14238 df-word 14421 df-concat 14478 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-frmd 18723 |
| This theorem is referenced by: frmdsssubm 18735 frmdgsum 18736 frmdup1 18738 frgpmhm 19644 mrsub0 35493 elmrsubrn 35497 |
| Copyright terms: Public domain | W3C validator |