Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrg0g Structured version   Visualization version   GIF version

Theorem idlsrg0g 33499
Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrg0g.1 𝑆 = (IDLsrg‘𝑅)
idlsrg0g.2 0 = (0g𝑅)
Assertion
Ref Expression
idlsrg0g (𝑅 ∈ Ring → { 0 } = (0g𝑆))

Proof of Theorem idlsrg0g
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2740 . 2 (0g𝑆) = (0g𝑆)
3 eqid 2740 . 2 (+g𝑆) = (+g𝑆)
4 eqid 2740 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5 idlsrg0g.2 . . . 4 0 = (0g𝑅)
64, 5lidl0 21263 . . 3 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
7 idlsrg0g.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
87, 4idlsrgbas 33497 . . 3 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘𝑆))
96, 8eleqtrd 2846 . 2 (𝑅 ∈ Ring → { 0 } ∈ (Base‘𝑆))
10 eqid 2740 . . . . . 6 (LSSum‘𝑅) = (LSSum‘𝑅)
117, 10idlsrgplusg 33498 . . . . 5 (𝑅 ∈ Ring → (LSSum‘𝑅) = (+g𝑆))
1211adantr 480 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (LSSum‘𝑅) = (+g𝑆))
1312oveqd 7465 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (LSSum‘𝑅)𝑖) = ({ 0 } (+g𝑆)𝑖))
14 simpr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (Base‘𝑆))
158adantr 480 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (LIdeal‘𝑅) = (Base‘𝑆))
1614, 15eleqtrrd 2847 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (LIdeal‘𝑅))
174lidlsubg 21256 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅))
1816, 17syldan 590 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (SubGrp‘𝑅))
195, 10lsm02 19714 . . . 4 (𝑖 ∈ (SubGrp‘𝑅) → ({ 0 } (LSSum‘𝑅)𝑖) = 𝑖)
2018, 19syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (LSSum‘𝑅)𝑖) = 𝑖)
2113, 20eqtr3d 2782 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (+g𝑆)𝑖) = 𝑖)
2212oveqd 7465 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(LSSum‘𝑅){ 0 }) = (𝑖(+g𝑆){ 0 }))
235, 10lsm01 19713 . . . 4 (𝑖 ∈ (SubGrp‘𝑅) → (𝑖(LSSum‘𝑅){ 0 }) = 𝑖)
2418, 23syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(LSSum‘𝑅){ 0 }) = 𝑖)
2522, 24eqtr3d 2782 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(+g𝑆){ 0 }) = 𝑖)
261, 2, 3, 9, 21, 25ismgmid2 18706 1 (𝑅 ∈ Ring → { 0 } = (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  SubGrpcsubg 19160  LSSumclsm 19676  Ringcrg 20260  LIdealclidl 21239  IDLsrgcidlsrg 33493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-idlsrg 33494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator