| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrg0g | Structured version Visualization version GIF version | ||
| Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.) |
| Ref | Expression |
|---|---|
| idlsrg0g.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
| idlsrg0g.2 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| idlsrg0g | ⊢ (𝑅 ∈ Ring → { 0 } = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2729 | . 2 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 3 | eqid 2729 | . 2 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2729 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 5 | idlsrg0g.2 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | lidl0 21116 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
| 7 | idlsrg0g.1 | . . . 4 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
| 8 | 7, 4 | idlsrgbas 33448 | . . 3 ⊢ (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘𝑆)) |
| 9 | 6, 8 | eleqtrd 2830 | . 2 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (Base‘𝑆)) |
| 10 | eqid 2729 | . . . . . 6 ⊢ (LSSum‘𝑅) = (LSSum‘𝑅) | |
| 11 | 7, 10 | idlsrgplusg 33449 | . . . . 5 ⊢ (𝑅 ∈ Ring → (LSSum‘𝑅) = (+g‘𝑆)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (LSSum‘𝑅) = (+g‘𝑆)) |
| 13 | 12 | oveqd 7386 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (LSSum‘𝑅)𝑖) = ({ 0 } (+g‘𝑆)𝑖)) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (Base‘𝑆)) | |
| 15 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (LIdeal‘𝑅) = (Base‘𝑆)) |
| 16 | 14, 15 | eleqtrrd 2831 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (LIdeal‘𝑅)) |
| 17 | 4 | lidlsubg 21109 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅)) |
| 18 | 16, 17 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (SubGrp‘𝑅)) |
| 19 | 5, 10 | lsm02 19578 | . . . 4 ⊢ (𝑖 ∈ (SubGrp‘𝑅) → ({ 0 } (LSSum‘𝑅)𝑖) = 𝑖) |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (LSSum‘𝑅)𝑖) = 𝑖) |
| 21 | 13, 20 | eqtr3d 2766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (+g‘𝑆)𝑖) = 𝑖) |
| 22 | 12 | oveqd 7386 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(LSSum‘𝑅){ 0 }) = (𝑖(+g‘𝑆){ 0 })) |
| 23 | 5, 10 | lsm01 19577 | . . . 4 ⊢ (𝑖 ∈ (SubGrp‘𝑅) → (𝑖(LSSum‘𝑅){ 0 }) = 𝑖) |
| 24 | 18, 23 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(LSSum‘𝑅){ 0 }) = 𝑖) |
| 25 | 22, 24 | eqtr3d 2766 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(+g‘𝑆){ 0 }) = 𝑖) |
| 26 | 1, 2, 3, 9, 21, 25 | ismgmid2 18571 | 1 ⊢ (𝑅 ∈ Ring → { 0 } = (0g‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 0gc0g 17378 SubGrpcsubg 19028 LSSumclsm 19540 Ringcrg 20118 LIdealclidl 21092 IDLsrgcidlsrg 33444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrg 20455 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-idlsrg 33445 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |