Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrg0g Structured version   Visualization version   GIF version

Theorem idlsrg0g 31059
 Description: The zero ideal is the additive identity of the semiring of ideals. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrg0g.1 𝑆 = (IDLsrg‘𝑅)
idlsrg0g.2 0 = (0g𝑅)
Assertion
Ref Expression
idlsrg0g (𝑅 ∈ Ring → { 0 } = (0g𝑆))

Proof of Theorem idlsrg0g
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2801 . 2 (0g𝑆) = (0g𝑆)
3 eqid 2801 . 2 (+g𝑆) = (+g𝑆)
4 eqid 2801 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
5 idlsrg0g.2 . . . 4 0 = (0g𝑅)
64, 5lidl0 19988 . . 3 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
7 idlsrg0g.1 . . . 4 𝑆 = (IDLsrg‘𝑅)
87, 4idlsrgbas 31057 . . 3 (𝑅 ∈ Ring → (LIdeal‘𝑅) = (Base‘𝑆))
96, 8eleqtrd 2895 . 2 (𝑅 ∈ Ring → { 0 } ∈ (Base‘𝑆))
10 eqid 2801 . . . . . 6 (LSSum‘𝑅) = (LSSum‘𝑅)
117, 10idlsrgplusg 31058 . . . . 5 (𝑅 ∈ Ring → (LSSum‘𝑅) = (+g𝑆))
1211adantr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (LSSum‘𝑅) = (+g𝑆))
1312oveqd 7156 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (LSSum‘𝑅)𝑖) = ({ 0 } (+g𝑆)𝑖))
14 simpr 488 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (Base‘𝑆))
158adantr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (LIdeal‘𝑅) = (Base‘𝑆))
1614, 15eleqtrrd 2896 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (LIdeal‘𝑅))
174lidlsubg 19984 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (LIdeal‘𝑅)) → 𝑖 ∈ (SubGrp‘𝑅))
1816, 17syldan 594 . . . 4 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → 𝑖 ∈ (SubGrp‘𝑅))
195, 10lsm02 18793 . . . 4 (𝑖 ∈ (SubGrp‘𝑅) → ({ 0 } (LSSum‘𝑅)𝑖) = 𝑖)
2018, 19syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (LSSum‘𝑅)𝑖) = 𝑖)
2113, 20eqtr3d 2838 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → ({ 0 } (+g𝑆)𝑖) = 𝑖)
2212oveqd 7156 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(LSSum‘𝑅){ 0 }) = (𝑖(+g𝑆){ 0 }))
235, 10lsm01 18792 . . . 4 (𝑖 ∈ (SubGrp‘𝑅) → (𝑖(LSSum‘𝑅){ 0 }) = 𝑖)
2418, 23syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(LSSum‘𝑅){ 0 }) = 𝑖)
2522, 24eqtr3d 2838 . 2 ((𝑅 ∈ Ring ∧ 𝑖 ∈ (Base‘𝑆)) → (𝑖(+g𝑆){ 0 }) = 𝑖)
261, 2, 3, 9, 21, 25ismgmid2 17873 1 (𝑅 ∈ Ring → { 0 } = (0g𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  {csn 4528  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  0gc0g 16708  SubGrpcsubg 18268  LSSumclsm 18754  Ringcrg 19293  LIdealclidl 19938  IDLsrgcidlsrg 31053 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-lsm 18756  df-mgp 19236  df-ur 19248  df-ring 19295  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-lidl 19942  df-idlsrg 31054 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator