| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndid | Structured version Visualization version GIF version | ||
| Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.) |
| Ref | Expression |
|---|---|
| ielefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| Ref | Expression |
|---|---|
| efmndid | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2737 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2737 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | eqid 2737 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | ielefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 5 | 4 | ielefmnd 18900 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 6 | 4, 1, 3 | efmndov 18894 | . . . 4 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
| 7 | 5, 6 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
| 8 | 4, 1 | efmndbasf 18888 | . . . . 5 ⊢ (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴⟶𝐴) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴⟶𝐴) |
| 10 | fcoi2 6783 | . . . 4 ⊢ (𝑓:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) |
| 12 | 7, 11 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓) |
| 13 | 5 | anim1ci 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺))) |
| 14 | 4, 1, 3 | efmndov 18894 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
| 16 | fcoi1 6782 | . . . 4 ⊢ (𝑓:𝐴⟶𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) | |
| 17 | 9, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) |
| 18 | 15, 17 | eqtrd 2777 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓) |
| 19 | 1, 2, 3, 5, 12, 18 | ismgmid2 18681 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 I cid 5577 ↾ cres 5687 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 0gc0g 17484 EndoFMndcefmnd 18881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-tset 17316 df-0g 17486 df-efmnd 18882 |
| This theorem is referenced by: sursubmefmnd 18909 injsubmefmnd 18910 idressubmefmnd 18911 smndex1n0mnd 18925 smndex2dnrinv 18928 smndex2dlinvh 18930 symgid 19419 symgsubmefmndALT 19421 |
| Copyright terms: Public domain | W3C validator |