![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efmndid | Structured version Visualization version GIF version |
Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.) |
Ref | Expression |
---|---|
ielefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
Ref | Expression |
---|---|
efmndid | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2735 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | ielefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
5 | 4 | ielefmnd 18913 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
6 | 4, 1, 3 | efmndov 18907 | . . . 4 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
7 | 5, 6 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
8 | 4, 1 | efmndbasf 18901 | . . . . 5 ⊢ (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴⟶𝐴) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴⟶𝐴) |
10 | fcoi2 6784 | . . . 4 ⊢ (𝑓:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) |
12 | 7, 11 | eqtrd 2775 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓) |
13 | 5 | anim1ci 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺))) |
14 | 4, 1, 3 | efmndov 18907 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
16 | fcoi1 6783 | . . . 4 ⊢ (𝑓:𝐴⟶𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) | |
17 | 9, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) |
18 | 15, 17 | eqtrd 2775 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓) |
19 | 1, 2, 3, 5, 12, 18 | ismgmid2 18694 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 I cid 5582 ↾ cres 5691 ∘ ccom 5693 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 EndoFMndcefmnd 18894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-struct 17181 df-slot 17216 df-ndx 17228 df-base 17246 df-plusg 17311 df-tset 17317 df-0g 17488 df-efmnd 18895 |
This theorem is referenced by: sursubmefmnd 18922 injsubmefmnd 18923 idressubmefmnd 18924 smndex1n0mnd 18938 smndex2dnrinv 18941 smndex2dlinvh 18943 symgid 19434 symgsubmefmndALT 19436 |
Copyright terms: Public domain | W3C validator |