| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efmndid | Structured version Visualization version GIF version | ||
| Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.) |
| Ref | Expression |
|---|---|
| ielefmnd.g | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
| Ref | Expression |
|---|---|
| efmndid | ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2735 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | ielefmnd.g | . . 3 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
| 5 | 4 | ielefmnd 18865 | . 2 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) |
| 6 | 4, 1, 3 | efmndov 18859 | . . . 4 ⊢ ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
| 7 | 5, 6 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓)) |
| 8 | 4, 1 | efmndbasf 18853 | . . . . 5 ⊢ (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴⟶𝐴) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴⟶𝐴) |
| 10 | fcoi2 6753 | . . . 4 ⊢ (𝑓:𝐴⟶𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓) |
| 12 | 7, 11 | eqtrd 2770 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g‘𝐺)𝑓) = 𝑓) |
| 13 | 5 | anim1ci 616 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺))) |
| 14 | 4, 1, 3 | efmndov 18859 | . . . 4 ⊢ ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴))) |
| 16 | fcoi1 6752 | . . . 4 ⊢ (𝑓:𝐴⟶𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) | |
| 17 | 9, 16 | syl 17 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓) |
| 18 | 15, 17 | eqtrd 2770 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Base‘𝐺)) → (𝑓(+g‘𝐺)( I ↾ 𝐴)) = 𝑓) |
| 19 | 1, 2, 3, 5, 12, 18 | ismgmid2 18646 | 1 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 I cid 5547 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 EndoFMndcefmnd 18846 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-tset 17290 df-0g 17455 df-efmnd 18847 |
| This theorem is referenced by: sursubmefmnd 18874 injsubmefmnd 18875 idressubmefmnd 18876 smndex1n0mnd 18890 smndex2dnrinv 18893 smndex2dlinvh 18895 symgid 19382 symgsubmefmndALT 19384 |
| Copyright terms: Public domain | W3C validator |