MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndid Structured version   Visualization version   GIF version

Theorem efmndid 18053
Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndid (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))

Proof of Theorem efmndid
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2821 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2821 . 2 (+g𝐺) = (+g𝐺)
4 ielefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
54ielefmnd 18052 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
64, 1, 3efmndov 18046 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
75, 6sylan 582 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
84, 1efmndbasf 18040 . . . . 5 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
98adantl 484 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
10 fcoi2 6553 . . . 4 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
119, 10syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
127, 11eqtrd 2856 . 2 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓)
135anim1ci 617 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
144, 1, 3efmndov 18046 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
1513, 14syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
16 fcoi1 6552 . . . 4 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
179, 16syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1815, 17eqtrd 2856 . 2 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)
191, 2, 3, 5, 12, 18ismgmid2 17878 1 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   I cid 5459  cres 5557  ccom 5559  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  0gc0g 16713  EndoFMndcefmnd 18033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-plusg 16578  df-tset 16584  df-0g 16715  df-efmnd 18034
This theorem is referenced by:  sursubmefmnd  18061  injsubmefmnd  18062  idressubmefmnd  18063  smndex1n0mnd  18077  smndex2dnrinv  18080  smndex2dlinvh  18082  symgid  18529  symgsubmefmndALT  18531
  Copyright terms: Public domain W3C validator