MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndid Structured version   Visualization version   GIF version

Theorem efmndid 18847
Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMndβ€˜π΄)
Assertion
Ref Expression
efmndid (𝐴 ∈ 𝑉 β†’ ( I β†Ύ 𝐴) = (0gβ€˜πΊ))

Proof of Theorem efmndid
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . 2 (Baseβ€˜πΊ) = (Baseβ€˜πΊ)
2 eqid 2728 . 2 (0gβ€˜πΊ) = (0gβ€˜πΊ)
3 eqid 2728 . 2 (+gβ€˜πΊ) = (+gβ€˜πΊ)
4 ielefmnd.g . . 3 𝐺 = (EndoFMndβ€˜π΄)
54ielefmnd 18846 . 2 (𝐴 ∈ 𝑉 β†’ ( I β†Ύ 𝐴) ∈ (Baseβ€˜πΊ))
64, 1, 3efmndov 18840 . . . 4 ((( I β†Ύ 𝐴) ∈ (Baseβ€˜πΊ) ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (( I β†Ύ 𝐴)(+gβ€˜πΊ)𝑓) = (( I β†Ύ 𝐴) ∘ 𝑓))
75, 6sylan 578 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (( I β†Ύ 𝐴)(+gβ€˜πΊ)𝑓) = (( I β†Ύ 𝐴) ∘ 𝑓))
84, 1efmndbasf 18834 . . . . 5 (𝑓 ∈ (Baseβ€˜πΊ) β†’ 𝑓:𝐴⟢𝐴)
98adantl 480 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ 𝑓:𝐴⟢𝐴)
10 fcoi2 6777 . . . 4 (𝑓:𝐴⟢𝐴 β†’ (( I β†Ύ 𝐴) ∘ 𝑓) = 𝑓)
119, 10syl 17 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (( I β†Ύ 𝐴) ∘ 𝑓) = 𝑓)
127, 11eqtrd 2768 . 2 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (( I β†Ύ 𝐴)(+gβ€˜πΊ)𝑓) = 𝑓)
135anim1ci 614 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (𝑓 ∈ (Baseβ€˜πΊ) ∧ ( I β†Ύ 𝐴) ∈ (Baseβ€˜πΊ)))
144, 1, 3efmndov 18840 . . . 4 ((𝑓 ∈ (Baseβ€˜πΊ) ∧ ( I β†Ύ 𝐴) ∈ (Baseβ€˜πΊ)) β†’ (𝑓(+gβ€˜πΊ)( I β†Ύ 𝐴)) = (𝑓 ∘ ( I β†Ύ 𝐴)))
1513, 14syl 17 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (𝑓(+gβ€˜πΊ)( I β†Ύ 𝐴)) = (𝑓 ∘ ( I β†Ύ 𝐴)))
16 fcoi1 6776 . . . 4 (𝑓:𝐴⟢𝐴 β†’ (𝑓 ∘ ( I β†Ύ 𝐴)) = 𝑓)
179, 16syl 17 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (𝑓 ∘ ( I β†Ύ 𝐴)) = 𝑓)
1815, 17eqtrd 2768 . 2 ((𝐴 ∈ 𝑉 ∧ 𝑓 ∈ (Baseβ€˜πΊ)) β†’ (𝑓(+gβ€˜πΊ)( I β†Ύ 𝐴)) = 𝑓)
191, 2, 3, 5, 12, 18ismgmid2 18635 1 (𝐴 ∈ 𝑉 β†’ ( I β†Ύ 𝐴) = (0gβ€˜πΊ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   I cid 5579   β†Ύ cres 5684   ∘ ccom 5686  βŸΆwf 6549  β€˜cfv 6553  (class class class)co 7426  Basecbs 17187  +gcplusg 17240  0gc0g 17428  EndoFMndcefmnd 18827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-struct 17123  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-tset 17259  df-0g 17430  df-efmnd 18828
This theorem is referenced by:  sursubmefmnd  18855  injsubmefmnd  18856  idressubmefmnd  18857  smndex1n0mnd  18871  smndex2dnrinv  18874  smndex2dlinvh  18876  symgid  19363  symgsubmefmndALT  19365
  Copyright terms: Public domain W3C validator