MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndid Structured version   Visualization version   GIF version

Theorem efmndid 18822
Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndid (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))

Proof of Theorem efmndid
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2730 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2730 . 2 (+g𝐺) = (+g𝐺)
4 ielefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
54ielefmnd 18821 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
64, 1, 3efmndov 18815 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
75, 6sylan 580 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
84, 1efmndbasf 18809 . . . . 5 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
98adantl 481 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
10 fcoi2 6738 . . . 4 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
119, 10syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
127, 11eqtrd 2765 . 2 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓)
135anim1ci 616 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
144, 1, 3efmndov 18815 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
1513, 14syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
16 fcoi1 6737 . . . 4 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
179, 16syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1815, 17eqtrd 2765 . 2 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)
191, 2, 3, 5, 12, 18ismgmid2 18602 1 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   I cid 5535  cres 5643  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  EndoFMndcefmnd 18802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-tset 17246  df-0g 17411  df-efmnd 18803
This theorem is referenced by:  sursubmefmnd  18830  injsubmefmnd  18831  idressubmefmnd  18832  smndex1n0mnd  18846  smndex2dnrinv  18849  smndex2dlinvh  18851  symgid  19338  symgsubmefmndALT  19340
  Copyright terms: Public domain W3C validator