![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efmndid | Structured version Visualization version GIF version |
Description: The identity function restricted to a set π΄ is the identity element of the monoid of endofunctions on π΄. (Contributed by AV, 25-Jan-2024.) |
Ref | Expression |
---|---|
ielefmnd.g | β’ πΊ = (EndoFMndβπ΄) |
Ref | Expression |
---|---|
efmndid | β’ (π΄ β π β ( I βΎ π΄) = (0gβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 β’ (BaseβπΊ) = (BaseβπΊ) | |
2 | eqid 2732 | . 2 β’ (0gβπΊ) = (0gβπΊ) | |
3 | eqid 2732 | . 2 β’ (+gβπΊ) = (+gβπΊ) | |
4 | ielefmnd.g | . . 3 β’ πΊ = (EndoFMndβπ΄) | |
5 | 4 | ielefmnd 18764 | . 2 β’ (π΄ β π β ( I βΎ π΄) β (BaseβπΊ)) |
6 | 4, 1, 3 | efmndov 18758 | . . . 4 β’ ((( I βΎ π΄) β (BaseβπΊ) β§ π β (BaseβπΊ)) β (( I βΎ π΄)(+gβπΊ)π) = (( I βΎ π΄) β π)) |
7 | 5, 6 | sylan 580 | . . 3 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (( I βΎ π΄)(+gβπΊ)π) = (( I βΎ π΄) β π)) |
8 | 4, 1 | efmndbasf 18752 | . . . . 5 β’ (π β (BaseβπΊ) β π:π΄βΆπ΄) |
9 | 8 | adantl 482 | . . . 4 β’ ((π΄ β π β§ π β (BaseβπΊ)) β π:π΄βΆπ΄) |
10 | fcoi2 6763 | . . . 4 β’ (π:π΄βΆπ΄ β (( I βΎ π΄) β π) = π) | |
11 | 9, 10 | syl 17 | . . 3 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (( I βΎ π΄) β π) = π) |
12 | 7, 11 | eqtrd 2772 | . 2 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (( I βΎ π΄)(+gβπΊ)π) = π) |
13 | 5 | anim1ci 616 | . . . 4 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (π β (BaseβπΊ) β§ ( I βΎ π΄) β (BaseβπΊ))) |
14 | 4, 1, 3 | efmndov 18758 | . . . 4 β’ ((π β (BaseβπΊ) β§ ( I βΎ π΄) β (BaseβπΊ)) β (π(+gβπΊ)( I βΎ π΄)) = (π β ( I βΎ π΄))) |
15 | 13, 14 | syl 17 | . . 3 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (π(+gβπΊ)( I βΎ π΄)) = (π β ( I βΎ π΄))) |
16 | fcoi1 6762 | . . . 4 β’ (π:π΄βΆπ΄ β (π β ( I βΎ π΄)) = π) | |
17 | 9, 16 | syl 17 | . . 3 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (π β ( I βΎ π΄)) = π) |
18 | 15, 17 | eqtrd 2772 | . 2 β’ ((π΄ β π β§ π β (BaseβπΊ)) β (π(+gβπΊ)( I βΎ π΄)) = π) |
19 | 1, 2, 3, 5, 12, 18 | ismgmid2 18583 | 1 β’ (π΄ β π β ( I βΎ π΄) = (0gβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 I cid 5572 βΎ cres 5677 β ccom 5679 βΆwf 6536 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 0gc0g 17381 EndoFMndcefmnd 18745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-tset 17212 df-0g 17383 df-efmnd 18746 |
This theorem is referenced by: sursubmefmnd 18773 injsubmefmnd 18774 idressubmefmnd 18775 smndex1n0mnd 18789 smndex2dnrinv 18792 smndex2dlinvh 18794 symgid 19263 symgsubmefmndALT 19265 |
Copyright terms: Public domain | W3C validator |