MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmndid Structured version   Visualization version   GIF version

Theorem efmndid 18923
Description: The identity function restricted to a set 𝐴 is the identity element of the monoid of endofunctions on 𝐴. (Contributed by AV, 25-Jan-2024.)
Hypothesis
Ref Expression
ielefmnd.g 𝐺 = (EndoFMnd‘𝐴)
Assertion
Ref Expression
efmndid (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))

Proof of Theorem efmndid
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2740 . 2 (0g𝐺) = (0g𝐺)
3 eqid 2740 . 2 (+g𝐺) = (+g𝐺)
4 ielefmnd.g . . 3 𝐺 = (EndoFMnd‘𝐴)
54ielefmnd 18922 . 2 (𝐴𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺))
64, 1, 3efmndov 18916 . . . 4 ((( I ↾ 𝐴) ∈ (Base‘𝐺) ∧ 𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
75, 6sylan 579 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = (( I ↾ 𝐴) ∘ 𝑓))
84, 1efmndbasf 18910 . . . . 5 (𝑓 ∈ (Base‘𝐺) → 𝑓:𝐴𝐴)
98adantl 481 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → 𝑓:𝐴𝐴)
10 fcoi2 6796 . . . 4 (𝑓:𝐴𝐴 → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
119, 10syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴) ∘ 𝑓) = 𝑓)
127, 11eqtrd 2780 . 2 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (( I ↾ 𝐴)(+g𝐺)𝑓) = 𝑓)
135anim1ci 615 . . . 4 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)))
144, 1, 3efmndov 18916 . . . 4 ((𝑓 ∈ (Base‘𝐺) ∧ ( I ↾ 𝐴) ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
1513, 14syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = (𝑓 ∘ ( I ↾ 𝐴)))
16 fcoi1 6795 . . . 4 (𝑓:𝐴𝐴 → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
179, 16syl 17 . . 3 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓 ∘ ( I ↾ 𝐴)) = 𝑓)
1815, 17eqtrd 2780 . 2 ((𝐴𝑉𝑓 ∈ (Base‘𝐺)) → (𝑓(+g𝐺)( I ↾ 𝐴)) = 𝑓)
191, 2, 3, 5, 12, 18ismgmid2 18706 1 (𝐴𝑉 → ( I ↾ 𝐴) = (0g𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   I cid 5592  cres 5702  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  EndoFMndcefmnd 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-tset 17330  df-0g 17501  df-efmnd 18904
This theorem is referenced by:  sursubmefmnd  18931  injsubmefmnd  18932  idressubmefmnd  18933  smndex1n0mnd  18947  smndex2dnrinv  18950  smndex2dlinvh  18952  symgid  19443  symgsubmefmndALT  19445
  Copyright terms: Public domain W3C validator