| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofnALT | Structured version Visualization version GIF version | ||
| Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isofnALT | ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7840 | . . . . . 6 ⊢ (𝑥 ∈ V → dom 𝑥 ∈ V) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V) |
| 3 | 2 | ralrimiva 3125 | . . . 4 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V) |
| 4 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥) | |
| 5 | 4 | fnmpt 6629 | . . . 4 ⊢ (∀𝑥 ∈ V dom 𝑥 ∈ V → (𝑥 ∈ V ↦ dom 𝑥) Fn V) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V) |
| 7 | invfn 49191 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 8 | ssv 3955 | . . . 4 ⊢ ran (Inv‘𝐶) ⊆ V | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ran (Inv‘𝐶) ⊆ V) |
| 10 | fnco 6607 | . . 3 ⊢ (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 12 | isofval 17672 | . . 3 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) | |
| 13 | 12 | fneq1d 6582 | . 2 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 14 | 11, 13 | mpbird 257 | 1 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 ↦ cmpt 5176 × cxp 5619 dom cdm 5621 ran crn 5622 ∘ ccom 5625 Fn wfn 6484 ‘cfv 6489 Basecbs 17127 Catccat 17578 Invcinv 17660 Isociso 17661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-inv 17663 df-iso 17664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |