| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isofnALT | Structured version Visualization version GIF version | ||
| Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isofnALT | ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmexg 7857 | . . . . . 6 ⊢ (𝑥 ∈ V → dom 𝑥 ∈ V) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V) |
| 3 | 2 | ralrimiva 3125 | . . . 4 ⊢ (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V) |
| 4 | eqid 2729 | . . . . 5 ⊢ (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥) | |
| 5 | 4 | fnmpt 6640 | . . . 4 ⊢ (∀𝑥 ∈ V dom 𝑥 ∈ V → (𝑥 ∈ V ↦ dom 𝑥) Fn V) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V) |
| 7 | invfn 48992 | . . 3 ⊢ (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 8 | ssv 3968 | . . . 4 ⊢ ran (Inv‘𝐶) ⊆ V | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝐶 ∈ Cat → ran (Inv‘𝐶) ⊆ V) |
| 10 | fnco 6618 | . . 3 ⊢ (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . 2 ⊢ (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| 12 | isofval 17695 | . . 3 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶))) | |
| 13 | 12 | fneq1d 6593 | . 2 ⊢ (𝐶 ∈ Cat → ((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))) |
| 14 | 11, 13 | mpbird 257 | 1 ⊢ (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ⊆ wss 3911 ↦ cmpt 5183 × cxp 5629 dom cdm 5631 ran crn 5632 ∘ ccom 5635 Fn wfn 6494 ‘cfv 6499 Basecbs 17155 Catccat 17601 Invcinv 17683 Isociso 17684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-inv 17686 df-iso 17687 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |