Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isofnALT Structured version   Visualization version   GIF version

Theorem isofnALT 48993
Description: The function value of the function returning the isomorphisms of a category is a function over the Cartesian square of the base set of the category. (Contributed by AV, 5-Apr-2020.) (Proof shortened by Zhi Wang, 3-Nov-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
isofnALT (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))

Proof of Theorem isofnALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmexg 7857 . . . . . 6 (𝑥 ∈ V → dom 𝑥 ∈ V)
21adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑥 ∈ V) → dom 𝑥 ∈ V)
32ralrimiva 3125 . . . 4 (𝐶 ∈ Cat → ∀𝑥 ∈ V dom 𝑥 ∈ V)
4 eqid 2729 . . . . 5 (𝑥 ∈ V ↦ dom 𝑥) = (𝑥 ∈ V ↦ dom 𝑥)
54fnmpt 6640 . . . 4 (∀𝑥 ∈ V dom 𝑥 ∈ V → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
63, 5syl 17 . . 3 (𝐶 ∈ Cat → (𝑥 ∈ V ↦ dom 𝑥) Fn V)
7 invfn 48992 . . 3 (𝐶 ∈ Cat → (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
8 ssv 3968 . . . 4 ran (Inv‘𝐶) ⊆ V
98a1i 11 . . 3 (𝐶 ∈ Cat → ran (Inv‘𝐶) ⊆ V)
10 fnco 6618 . . 3 (((𝑥 ∈ V ↦ dom 𝑥) Fn V ∧ (Inv‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ran (Inv‘𝐶) ⊆ V) → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
116, 7, 9, 10syl3anc 1373 . 2 (𝐶 ∈ Cat → ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶)))
12 isofval 17695 . . 3 (𝐶 ∈ Cat → (Iso‘𝐶) = ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)))
1312fneq1d 6593 . 2 (𝐶 ∈ Cat → ((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝐶)) Fn ((Base‘𝐶) × (Base‘𝐶))))
1411, 13mpbird 257 1 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  Vcvv 3444  wss 3911  cmpt 5183   × cxp 5629  dom cdm 5631  ran crn 5632  ccom 5635   Fn wfn 6494  cfv 6499  Basecbs 17155  Catccat 17601  Invcinv 17683  Isociso 17684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-inv 17686  df-iso 17687
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator