MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpyd Structured version   Visualization version   GIF version

Theorem isphtpyd 24891
Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
isphtpyd.1 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
isphtpyd.2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
isphtpyd.3 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
Assertion
Ref Expression
isphtpyd (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠

Proof of Theorem isphtpyd
StepHypRef Expression
1 isphtpyd.1 . 2 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
2 isphtpyd.2 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
3 isphtpyd.3 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
42, 3jca 511 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
54ralrimiva 3126 . 2 (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
6 isphtpy.2 . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
7 isphtpy.3 . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
86, 7isphtpy 24886 . 2 (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))))
91, 5, 8mpbir2and 713 1 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cfv 6513  (class class class)co 7389  0cc0 11074  1c1 11075  [,]cicc 13315   Cn ccn 23117  IIcii 24774   Htpy chtpy 24872  PHtpycphtpy 24873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-top 22787  df-topon 22804  df-cn 23120  df-phtpy 24876
This theorem is referenced by:  isphtpy2d  24892  phtpycom  24893  phtpyid  24894  phtpyco2  24895  phtpycc  24896
  Copyright terms: Public domain W3C validator