| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isphtpyd | Structured version Visualization version GIF version | ||
| Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| isphtpyd.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
| isphtpyd.2 | ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) |
| isphtpyd.3 | ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) |
| Ref | Expression |
|---|---|
| isphtpyd | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpyd.1 | . 2 ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) | |
| 2 | isphtpyd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) | |
| 3 | isphtpyd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) | |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
| 5 | 4 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
| 6 | isphtpy.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 7 | isphtpy.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 8 | 6, 7 | isphtpy 24886 | . 2 ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |
| 9 | 1, 5, 8 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 [,]cicc 13315 Cn ccn 23117 IIcii 24774 Htpy chtpy 24872 PHtpycphtpy 24873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-map 8803 df-top 22787 df-topon 22804 df-cn 23120 df-phtpy 24876 |
| This theorem is referenced by: isphtpy2d 24892 phtpycom 24893 phtpyid 24894 phtpyco2 24895 phtpycc 24896 |
| Copyright terms: Public domain | W3C validator |