| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isphtpyd | Structured version Visualization version GIF version | ||
| Description: Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| isphtpyd.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
| isphtpyd.2 | ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) |
| isphtpyd.3 | ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) |
| Ref | Expression |
|---|---|
| isphtpyd | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpyd.1 | . 2 ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) | |
| 2 | isphtpyd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) | |
| 3 | isphtpyd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) | |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
| 5 | 4 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
| 6 | isphtpy.2 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 7 | isphtpy.3 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 8 | 6, 7 | isphtpy 24902 | . 2 ⊢ (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))) |
| 9 | 1, 5, 8 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 [,]cicc 13243 Cn ccn 23134 IIcii 24790 Htpy chtpy 24888 PHtpycphtpy 24889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-top 22804 df-topon 22821 df-cn 23137 df-phtpy 24892 |
| This theorem is referenced by: isphtpy2d 24908 phtpycom 24909 phtpyid 24910 phtpyco2 24911 phtpycc 24912 |
| Copyright terms: Public domain | W3C validator |