| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpycom | Structured version Visualization version GIF version | ||
| Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| phtpycom.6 | ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) |
| phtpycom.7 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Ref | Expression |
|---|---|
| phtpycom | ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpy.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 2 | isphtpy.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 3 | iitopon 24905 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 5 | phtpycom.6 | . . 3 ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) | |
| 6 | 2, 1 | phtpyhtpy 25014 | . . . 4 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| 7 | phtpycom.7 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 8 | 6, 7 | sseldd 3984 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
| 9 | 4, 2, 1, 5, 8 | htpycom 25008 | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝐺(II Htpy 𝐽)𝐹)) |
| 10 | 0elunit 13509 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 11 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1)) | |
| 12 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 0 → (𝑥𝐻(1 − 𝑦)) = (0𝐻(1 − 𝑦))) | |
| 13 | oveq2 7439 | . . . . . 6 ⊢ (𝑦 = 𝑡 → (1 − 𝑦) = (1 − 𝑡)) | |
| 14 | 13 | oveq2d 7447 | . . . . 5 ⊢ (𝑦 = 𝑡 → (0𝐻(1 − 𝑦)) = (0𝐻(1 − 𝑡))) |
| 15 | ovex 7464 | . . . . 5 ⊢ (0𝐻(1 − 𝑡)) ∈ V | |
| 16 | 12, 14, 5, 15 | ovmpo 7593 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (0𝐻(1 − 𝑡))) |
| 17 | 10, 11, 16 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (0𝐻(1 − 𝑡))) |
| 18 | iirev 24956 | . . . . 5 ⊢ (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1)) | |
| 19 | 2, 1, 7 | phtpyi 25016 | . . . . 5 ⊢ ((𝜑 ∧ (1 − 𝑡) ∈ (0[,]1)) → ((0𝐻(1 − 𝑡)) = (𝐹‘0) ∧ (1𝐻(1 − 𝑡)) = (𝐹‘1))) |
| 20 | 18, 19 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → ((0𝐻(1 − 𝑡)) = (𝐹‘0) ∧ (1𝐻(1 − 𝑡)) = (𝐹‘1))) |
| 21 | 20 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (0𝐻(1 − 𝑡)) = (𝐹‘0)) |
| 22 | 2, 1, 7 | phtpy01 25017 | . . . . 5 ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
| 24 | 23 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘0) = (𝐺‘0)) |
| 25 | 17, 21, 24 | 3eqtrd 2781 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (𝐺‘0)) |
| 26 | 1elunit 13510 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 27 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 1 → (𝑥𝐻(1 − 𝑦)) = (1𝐻(1 − 𝑦))) | |
| 28 | 13 | oveq2d 7447 | . . . . 5 ⊢ (𝑦 = 𝑡 → (1𝐻(1 − 𝑦)) = (1𝐻(1 − 𝑡))) |
| 29 | ovex 7464 | . . . . 5 ⊢ (1𝐻(1 − 𝑡)) ∈ V | |
| 30 | 27, 28, 5, 29 | ovmpo 7593 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (1𝐻(1 − 𝑡))) |
| 31 | 26, 11, 30 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (1𝐻(1 − 𝑡))) |
| 32 | 20 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (1𝐻(1 − 𝑡)) = (𝐹‘1)) |
| 33 | 23 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘1) = (𝐺‘1)) |
| 34 | 31, 32, 33 | 3eqtrd 2781 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (𝐺‘1)) |
| 35 | 1, 2, 9, 25, 34 | isphtpyd 25018 | 1 ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 0cc0 11155 1c1 11156 − cmin 11492 [,]cicc 13390 TopOnctopon 22916 Cn ccn 23232 IIcii 24901 Htpy chtpy 24999 PHtpycphtpy 25000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-icc 13394 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cn 23235 df-cnp 23236 df-tx 23570 df-hmeo 23763 df-xms 24330 df-ms 24331 df-tms 24332 df-ii 24903 df-htpy 25002 df-phtpy 25003 |
| This theorem is referenced by: phtpcer 25027 |
| Copyright terms: Public domain | W3C validator |