| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpycom | Structured version Visualization version GIF version | ||
| Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| phtpycom.6 | ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) |
| phtpycom.7 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| Ref | Expression |
|---|---|
| phtpycom | ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isphtpy.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
| 2 | isphtpy.2 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 3 | iitopon 24794 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 5 | phtpycom.6 | . . 3 ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) | |
| 6 | 2, 1 | phtpyhtpy 24903 | . . . 4 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| 7 | phtpycom.7 | . . . 4 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
| 8 | 6, 7 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
| 9 | 4, 2, 1, 5, 8 | htpycom 24897 | . 2 ⊢ (𝜑 → 𝐾 ∈ (𝐺(II Htpy 𝐽)𝐹)) |
| 10 | 0elunit 13364 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 11 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1)) | |
| 12 | oveq1 7348 | . . . . 5 ⊢ (𝑥 = 0 → (𝑥𝐻(1 − 𝑦)) = (0𝐻(1 − 𝑦))) | |
| 13 | oveq2 7349 | . . . . . 6 ⊢ (𝑦 = 𝑡 → (1 − 𝑦) = (1 − 𝑡)) | |
| 14 | 13 | oveq2d 7357 | . . . . 5 ⊢ (𝑦 = 𝑡 → (0𝐻(1 − 𝑦)) = (0𝐻(1 − 𝑡))) |
| 15 | ovex 7374 | . . . . 5 ⊢ (0𝐻(1 − 𝑡)) ∈ V | |
| 16 | 12, 14, 5, 15 | ovmpo 7501 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (0𝐻(1 − 𝑡))) |
| 17 | 10, 11, 16 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (0𝐻(1 − 𝑡))) |
| 18 | iirev 24845 | . . . . 5 ⊢ (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1)) | |
| 19 | 2, 1, 7 | phtpyi 24905 | . . . . 5 ⊢ ((𝜑 ∧ (1 − 𝑡) ∈ (0[,]1)) → ((0𝐻(1 − 𝑡)) = (𝐹‘0) ∧ (1𝐻(1 − 𝑡)) = (𝐹‘1))) |
| 20 | 18, 19 | sylan2 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → ((0𝐻(1 − 𝑡)) = (𝐹‘0) ∧ (1𝐻(1 − 𝑡)) = (𝐹‘1))) |
| 21 | 20 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (0𝐻(1 − 𝑡)) = (𝐹‘0)) |
| 22 | 2, 1, 7 | phtpy01 24906 | . . . . 5 ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
| 24 | 23 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘0) = (𝐺‘0)) |
| 25 | 17, 21, 24 | 3eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (𝐺‘0)) |
| 26 | 1elunit 13365 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 27 | oveq1 7348 | . . . . 5 ⊢ (𝑥 = 1 → (𝑥𝐻(1 − 𝑦)) = (1𝐻(1 − 𝑦))) | |
| 28 | 13 | oveq2d 7357 | . . . . 5 ⊢ (𝑦 = 𝑡 → (1𝐻(1 − 𝑦)) = (1𝐻(1 − 𝑡))) |
| 29 | ovex 7374 | . . . . 5 ⊢ (1𝐻(1 − 𝑡)) ∈ V | |
| 30 | 27, 28, 5, 29 | ovmpo 7501 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (1𝐻(1 − 𝑡))) |
| 31 | 26, 11, 30 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (1𝐻(1 − 𝑡))) |
| 32 | 20 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (1𝐻(1 − 𝑡)) = (𝐹‘1)) |
| 33 | 23 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘1) = (𝐺‘1)) |
| 34 | 31, 32, 33 | 3eqtrd 2770 | . 2 ⊢ ((𝜑 ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (𝐺‘1)) |
| 35 | 1, 2, 9, 25, 34 | isphtpyd 24907 | 1 ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 0cc0 11001 1c1 11002 − cmin 11339 [,]cicc 13243 TopOnctopon 22820 Cn ccn 23134 IIcii 24790 Htpy chtpy 24888 PHtpycphtpy 24889 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-q 12842 df-rp 12886 df-xneg 13006 df-xadd 13007 df-xmul 13008 df-ioo 13244 df-icc 13247 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-starv 17171 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-unif 17179 df-hom 17180 df-cco 17181 df-rest 17321 df-topn 17322 df-0g 17340 df-gsum 17341 df-topgen 17342 df-pt 17343 df-prds 17346 df-xrs 17401 df-qtop 17406 df-imas 17407 df-xps 17409 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-mulg 18976 df-cntz 19224 df-cmn 19689 df-psmet 21278 df-xmet 21279 df-met 21280 df-bl 21281 df-mopn 21282 df-cnfld 21287 df-top 22804 df-topon 22821 df-topsp 22843 df-bases 22856 df-cn 23137 df-cnp 23138 df-tx 23472 df-hmeo 23665 df-xms 24230 df-ms 24231 df-tms 24232 df-ii 24792 df-htpy 24891 df-phtpy 24892 |
| This theorem is referenced by: phtpcer 24916 |
| Copyright terms: Public domain | W3C validator |