MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpycom Structured version   Visualization version   GIF version

Theorem phtpycom 24894
Description: Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpycom.6 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
phtpycom.7 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpycom (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐻   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem phtpycom
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 isphtpy.3 . 2 (𝜑𝐺 ∈ (II Cn 𝐽))
2 isphtpy.2 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
3 iitopon 24779 . . . 4 II ∈ (TopOn‘(0[,]1))
43a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
5 phtpycom.6 . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦)))
62, 1phtpyhtpy 24888 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
7 phtpycom.7 . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
86, 7sseldd 3950 . . 3 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
94, 2, 1, 5, 8htpycom 24882 . 2 (𝜑𝐾 ∈ (𝐺(II Htpy 𝐽)𝐹))
10 0elunit 13437 . . . 4 0 ∈ (0[,]1)
11 simpr 484 . . . 4 ((𝜑𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
12 oveq1 7397 . . . . 5 (𝑥 = 0 → (𝑥𝐻(1 − 𝑦)) = (0𝐻(1 − 𝑦)))
13 oveq2 7398 . . . . . 6 (𝑦 = 𝑡 → (1 − 𝑦) = (1 − 𝑡))
1413oveq2d 7406 . . . . 5 (𝑦 = 𝑡 → (0𝐻(1 − 𝑦)) = (0𝐻(1 − 𝑡)))
15 ovex 7423 . . . . 5 (0𝐻(1 − 𝑡)) ∈ V
1612, 14, 5, 15ovmpo 7552 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (0𝐻(1 − 𝑡)))
1710, 11, 16sylancr 587 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (0𝐻(1 − 𝑡)))
18 iirev 24830 . . . . 5 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1))
192, 1, 7phtpyi 24890 . . . . 5 ((𝜑 ∧ (1 − 𝑡) ∈ (0[,]1)) → ((0𝐻(1 − 𝑡)) = (𝐹‘0) ∧ (1𝐻(1 − 𝑡)) = (𝐹‘1)))
2018, 19sylan2 593 . . . 4 ((𝜑𝑡 ∈ (0[,]1)) → ((0𝐻(1 − 𝑡)) = (𝐹‘0) ∧ (1𝐻(1 − 𝑡)) = (𝐹‘1)))
2120simpld 494 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → (0𝐻(1 − 𝑡)) = (𝐹‘0))
222, 1, 7phtpy01 24891 . . . . 5 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
2322adantr 480 . . . 4 ((𝜑𝑡 ∈ (0[,]1)) → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
2423simpld 494 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → (𝐹‘0) = (𝐺‘0))
2517, 21, 243eqtrd 2769 . 2 ((𝜑𝑡 ∈ (0[,]1)) → (0𝐾𝑡) = (𝐺‘0))
26 1elunit 13438 . . . 4 1 ∈ (0[,]1)
27 oveq1 7397 . . . . 5 (𝑥 = 1 → (𝑥𝐻(1 − 𝑦)) = (1𝐻(1 − 𝑦)))
2813oveq2d 7406 . . . . 5 (𝑦 = 𝑡 → (1𝐻(1 − 𝑦)) = (1𝐻(1 − 𝑡)))
29 ovex 7423 . . . . 5 (1𝐻(1 − 𝑡)) ∈ V
3027, 28, 5, 29ovmpo 7552 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (1𝐻(1 − 𝑡)))
3126, 11, 30sylancr 587 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (1𝐻(1 − 𝑡)))
3220simprd 495 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → (1𝐻(1 − 𝑡)) = (𝐹‘1))
3323simprd 495 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → (𝐹‘1) = (𝐺‘1))
3431, 32, 333eqtrd 2769 . 2 ((𝜑𝑡 ∈ (0[,]1)) → (1𝐾𝑡) = (𝐺‘1))
351, 2, 9, 25, 34isphtpyd 24892 1 (𝜑𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  cmpo 7392  0cc0 11075  1c1 11076  cmin 11412  [,]cicc 13316  TopOnctopon 22804   Cn ccn 23118  IIcii 24775   Htpy chtpy 24873  PHtpycphtpy 24874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-ii 24777  df-htpy 24876  df-phtpy 24877
This theorem is referenced by:  phtpcer  24901
  Copyright terms: Public domain W3C validator