| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpyid | Structured version Visualization version GIF version | ||
| Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| phtpyid.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
| phtpyid.3 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| phtpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phtpyid.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | phtpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
| 3 | iitopon 24748 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 5 | 2, 4, 1 | htpyid 24852 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹)) |
| 6 | 0elunit 13406 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 7 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) | |
| 8 | eqidd 2730 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0)) | |
| 9 | fvex 6853 | . . . . 5 ⊢ (𝐹‘0) ∈ V | |
| 10 | 7, 8, 2, 9 | ovmpo 7529 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
| 11 | 6, 10 | mpan 690 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0)) |
| 12 | 11 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
| 13 | 1elunit 13407 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 14 | fveq2 6840 | . . . . 5 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
| 15 | eqidd 2730 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1)) | |
| 16 | fvex 6853 | . . . . 5 ⊢ (𝐹‘1) ∈ V | |
| 17 | 14, 15, 2, 16 | ovmpo 7529 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
| 18 | 13, 17 | mpan 690 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1)) |
| 19 | 18 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
| 20 | 1, 1, 5, 12, 19 | isphtpyd 24861 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ∈ cmpo 7371 0cc0 11044 1c1 11045 [,]cicc 13285 TopOnctopon 22773 Cn ccn 23087 IIcii 24744 PHtpycphtpy 24843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-top 22757 df-topon 22774 df-bases 22809 df-cn 23090 df-tx 23425 df-ii 24746 df-htpy 24845 df-phtpy 24846 |
| This theorem is referenced by: phtpcer 24870 |
| Copyright terms: Public domain | W3C validator |