| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > phtpyid | Structured version Visualization version GIF version | ||
| Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| Ref | Expression |
|---|---|
| phtpyid.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
| phtpyid.3 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| Ref | Expression |
|---|---|
| phtpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phtpyid.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
| 2 | phtpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
| 3 | iitopon 24772 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
| 5 | 2, 4, 1 | htpyid 24876 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹)) |
| 6 | 0elunit 13430 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
| 7 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) | |
| 8 | eqidd 2730 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0)) | |
| 9 | fvex 6871 | . . . . 5 ⊢ (𝐹‘0) ∈ V | |
| 10 | 7, 8, 2, 9 | ovmpo 7549 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
| 11 | 6, 10 | mpan 690 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0)) |
| 12 | 11 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
| 13 | 1elunit 13431 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
| 14 | fveq2 6858 | . . . . 5 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
| 15 | eqidd 2730 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1)) | |
| 16 | fvex 6871 | . . . . 5 ⊢ (𝐹‘1) ∈ V | |
| 17 | 14, 15, 2, 16 | ovmpo 7549 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
| 18 | 13, 17 | mpan 690 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1)) |
| 19 | 18 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
| 20 | 1, 1, 5, 12, 19 | isphtpyd 24885 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 0cc0 11068 1c1 11069 [,]cicc 13309 TopOnctopon 22797 Cn ccn 23111 IIcii 24768 PHtpycphtpy 24867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 df-tx 23449 df-ii 24770 df-htpy 24869 df-phtpy 24870 |
| This theorem is referenced by: phtpcer 24894 |
| Copyright terms: Public domain | W3C validator |