MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyid Structured version   Visualization version   GIF version

Theorem phtpyid 23116
Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
phtpyid.1 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
phtpyid.3 (𝜑𝐹 ∈ (II Cn 𝐽))
Assertion
Ref Expression
phtpyid (𝜑𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)

Proof of Theorem phtpyid
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyid.3 . 2 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyid.1 . . 3 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹𝑥))
3 iitopon 23010 . . . 4 II ∈ (TopOn‘(0[,]1))
43a1i 11 . . 3 (𝜑 → II ∈ (TopOn‘(0[,]1)))
52, 4, 1htpyid 23104 . 2 (𝜑𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹))
6 0elunit 12542 . . . 4 0 ∈ (0[,]1)
7 fveq2 6411 . . . . 5 (𝑥 = 0 → (𝐹𝑥) = (𝐹‘0))
8 eqidd 2800 . . . . 5 (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0))
9 fvex 6424 . . . . 5 (𝐹‘0) ∈ V
107, 8, 2, 9ovmpt2 7030 . . . 4 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0))
116, 10mpan 682 . . 3 (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0))
1211adantl 474 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0))
13 1elunit 12543 . . . 4 1 ∈ (0[,]1)
14 fveq2 6411 . . . . 5 (𝑥 = 1 → (𝐹𝑥) = (𝐹‘1))
15 eqidd 2800 . . . . 5 (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1))
16 fvex 6424 . . . . 5 (𝐹‘1) ∈ V
1714, 15, 2, 16ovmpt2 7030 . . . 4 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1))
1813, 17mpan 682 . . 3 (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1))
1918adantl 474 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1))
201, 1, 5, 12, 19isphtpyd 23113 1 (𝜑𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1653  wcel 2157  cfv 6101  (class class class)co 6878  cmpt2 6880  0cc0 10224  1c1 10225  [,]cicc 12427  TopOnctopon 21043   Cn ccn 21357  IIcii 23006  PHtpycphtpy 23095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-icc 12431  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-topgen 16419  df-psmet 20060  df-xmet 20061  df-met 20062  df-bl 20063  df-mopn 20064  df-top 21027  df-topon 21044  df-bases 21079  df-cn 21360  df-tx 21694  df-ii 23008  df-htpy 23097  df-phtpy 23098
This theorem is referenced by:  phtpcer  23122
  Copyright terms: Public domain W3C validator