Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phtpyid | Structured version Visualization version GIF version |
Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
phtpyid.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
phtpyid.3 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
phtpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyid.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | phtpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
3 | iitopon 23948 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
5 | 2, 4, 1 | htpyid 24046 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹)) |
6 | 0elunit 13130 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
7 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) | |
8 | eqidd 2739 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0)) | |
9 | fvex 6769 | . . . . 5 ⊢ (𝐹‘0) ∈ V | |
10 | 7, 8, 2, 9 | ovmpo 7411 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
11 | 6, 10 | mpan 686 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0)) |
12 | 11 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
13 | 1elunit 13131 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
14 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
15 | eqidd 2739 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1)) | |
16 | fvex 6769 | . . . . 5 ⊢ (𝐹‘1) ∈ V | |
17 | 14, 15, 2, 16 | ovmpo 7411 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
18 | 13, 17 | mpan 686 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1)) |
19 | 18 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
20 | 1, 1, 5, 12, 19 | isphtpyd 24055 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 0cc0 10802 1c1 10803 [,]cicc 13011 TopOnctopon 21967 Cn ccn 22283 IIcii 23944 PHtpycphtpy 24037 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 df-tx 22621 df-ii 23946 df-htpy 24039 df-phtpy 24040 |
This theorem is referenced by: phtpcer 24064 |
Copyright terms: Public domain | W3C validator |