Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > phtpyid | Structured version Visualization version GIF version |
Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
phtpyid.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
phtpyid.3 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
phtpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyid.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | phtpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
3 | iitopon 24148 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
5 | 2, 4, 1 | htpyid 24246 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹)) |
6 | 0elunit 13302 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
7 | fveq2 6825 | . . . . 5 ⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) | |
8 | eqidd 2737 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0)) | |
9 | fvex 6838 | . . . . 5 ⊢ (𝐹‘0) ∈ V | |
10 | 7, 8, 2, 9 | ovmpo 7495 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
11 | 6, 10 | mpan 687 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0)) |
12 | 11 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
13 | 1elunit 13303 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
14 | fveq2 6825 | . . . . 5 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
15 | eqidd 2737 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1)) | |
16 | fvex 6838 | . . . . 5 ⊢ (𝐹‘1) ∈ V | |
17 | 14, 15, 2, 16 | ovmpo 7495 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
18 | 13, 17 | mpan 687 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1)) |
19 | 18 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
20 | 1, 1, 5, 12, 19 | isphtpyd 24255 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6479 (class class class)co 7337 ∈ cmpo 7339 0cc0 10972 1c1 10973 [,]cicc 13183 TopOnctopon 22165 Cn ccn 22481 IIcii 24144 PHtpycphtpy 24237 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-pre-sup 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-sup 9299 df-inf 9300 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-nn 12075 df-2 12137 df-3 12138 df-n0 12335 df-z 12421 df-uz 12684 df-q 12790 df-rp 12832 df-xneg 12949 df-xadd 12950 df-xmul 12951 df-icc 13187 df-seq 13823 df-exp 13884 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-topgen 17251 df-psmet 20695 df-xmet 20696 df-met 20697 df-bl 20698 df-mopn 20699 df-top 22149 df-topon 22166 df-bases 22202 df-cn 22484 df-tx 22819 df-ii 24146 df-htpy 24239 df-phtpy 24240 |
This theorem is referenced by: phtpcer 24264 |
Copyright terms: Public domain | W3C validator |