![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phtpyid | Structured version Visualization version GIF version |
Description: A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
phtpyid.1 | ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) |
phtpyid.3 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
Ref | Expression |
---|---|
phtpyid | ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | phtpyid.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
2 | phtpyid.1 | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) | |
3 | iitopon 23010 | . . . 4 ⊢ II ∈ (TopOn‘(0[,]1)) | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
5 | 2, 4, 1 | htpyid 23104 | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝐹(II Htpy 𝐽)𝐹)) |
6 | 0elunit 12542 | . . . 4 ⊢ 0 ∈ (0[,]1) | |
7 | fveq2 6411 | . . . . 5 ⊢ (𝑥 = 0 → (𝐹‘𝑥) = (𝐹‘0)) | |
8 | eqidd 2800 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘0) = (𝐹‘0)) | |
9 | fvex 6424 | . . . . 5 ⊢ (𝐹‘0) ∈ V | |
10 | 7, 8, 2, 9 | ovmpt2 7030 | . . . 4 ⊢ ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
11 | 6, 10 | mpan 682 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (0𝐺𝑠) = (𝐹‘0)) |
12 | 11 | adantl 474 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐺𝑠) = (𝐹‘0)) |
13 | 1elunit 12543 | . . . 4 ⊢ 1 ∈ (0[,]1) | |
14 | fveq2 6411 | . . . . 5 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
15 | eqidd 2800 | . . . . 5 ⊢ (𝑦 = 𝑠 → (𝐹‘1) = (𝐹‘1)) | |
16 | fvex 6424 | . . . . 5 ⊢ (𝐹‘1) ∈ V | |
17 | 14, 15, 2, 16 | ovmpt2 7030 | . . . 4 ⊢ ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
18 | 13, 17 | mpan 682 | . . 3 ⊢ (𝑠 ∈ (0[,]1) → (1𝐺𝑠) = (𝐹‘1)) |
19 | 18 | adantl 474 | . 2 ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐺𝑠) = (𝐹‘1)) |
20 | 1, 1, 5, 12, 19 | isphtpyd 23113 | 1 ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 ‘cfv 6101 (class class class)co 6878 ↦ cmpt2 6880 0cc0 10224 1c1 10225 [,]cicc 12427 TopOnctopon 21043 Cn ccn 21357 IIcii 23006 PHtpycphtpy 23095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-er 7982 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-icc 12431 df-seq 13056 df-exp 13115 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-topgen 16419 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-top 21027 df-topon 21044 df-bases 21079 df-cn 21360 df-tx 21694 df-ii 23008 df-htpy 23097 df-phtpy 23098 |
This theorem is referenced by: phtpcer 23122 |
Copyright terms: Public domain | W3C validator |