MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   GIF version

Theorem phtpyco2 24353
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f (𝜑𝐹 ∈ (II Cn 𝐽))
phtpyco2.g (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
phtpyco2.h (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))

Proof of Theorem phtpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 cnco 22617 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
5 phtpyco2.g . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cnco 22617 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
75, 2, 6syl2anc 584 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
81, 5phtpyhtpy 24345 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
9 phtpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
108, 9sseldd 3945 . . 3 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
111, 5, 2, 10htpyco2 24342 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(II Htpy 𝐾)(𝑃𝐺)))
121, 5, 9phtpyi 24347 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
1312simpld 495 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
1413fveq2d 6846 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0)))
15 iitopon 24242 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
16 txtopon 22942 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
1715, 15, 16mp2an 690 . . . . . 6 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
18 cntop2 22592 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
191, 18syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
20 toptopon2 22267 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2119, 20sylib 217 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
221, 5phtpycn 24346 . . . . . . 7 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽))
2322, 9sseldd 3945 . . . . . 6 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
24 cnf2 22600 . . . . . 6 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐻 ∈ ((II ×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
2517, 21, 23, 24mp3an2i 1466 . . . . 5 (𝜑𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
26 0elunit 13386 . . . . . 6 0 ∈ (0[,]1)
27 simpr 485 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
28 opelxpi 5670 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
2926, 27, 28sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
30 fvco3 6940 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
3125, 29, 30syl2an2r 683 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
32 df-ov 7360 . . . 4 (0(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨0, 𝑠⟩)
33 df-ov 7360 . . . . 5 (0𝐻𝑠) = (𝐻‘⟨0, 𝑠⟩)
3433fveq2i 6845 . . . 4 (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘⟨0, 𝑠⟩))
3531, 32, 343eqtr4g 2801 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = (𝑃‘(0𝐻𝑠)))
36 iiuni 24244 . . . . . . 7 (0[,]1) = II
37 eqid 2736 . . . . . . 7 𝐽 = 𝐽
3836, 37cnf 22597 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
391, 38syl 17 . . . . 5 (𝜑𝐹:(0[,]1)⟶ 𝐽)
4039adantr 481 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶ 𝐽)
41 fvco3 6940 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4240, 26, 41sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4314, 35, 423eqtr4d 2786 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = ((𝑃𝐹)‘0))
4412simprd 496 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
4544fveq2d 6846 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1)))
46 1elunit 13387 . . . . . 6 1 ∈ (0[,]1)
47 opelxpi 5670 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
4846, 27, 47sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
49 fvco3 6940 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
5025, 48, 49syl2an2r 683 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
51 df-ov 7360 . . . 4 (1(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨1, 𝑠⟩)
52 df-ov 7360 . . . . 5 (1𝐻𝑠) = (𝐻‘⟨1, 𝑠⟩)
5352fveq2i 6845 . . . 4 (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘⟨1, 𝑠⟩))
5450, 51, 533eqtr4g 2801 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = (𝑃‘(1𝐻𝑠)))
55 fvco3 6940 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5640, 46, 55sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5745, 54, 563eqtr4d 2786 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = ((𝑃𝐹)‘1))
584, 7, 11, 43, 57isphtpyd 24349 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cop 4592   cuni 4865   × cxp 5631  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052  [,]cicc 13267  Topctop 22242  TopOnctopon 22259   Cn ccn 22575   ×t ctx 22911  IIcii 24238   Htpy chtpy 24330  PHtpycphtpy 24331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-top 22243  df-topon 22260  df-bases 22296  df-cn 22578  df-tx 22913  df-ii 24240  df-htpy 24333  df-phtpy 24334
This theorem is referenced by:  phtpcco2  24362
  Copyright terms: Public domain W3C validator