Step | Hyp | Ref
| Expression |
1 | | phtpyco2.f |
. . 3
β’ (π β πΉ β (II Cn π½)) |
2 | | phtpyco2.p |
. . 3
β’ (π β π β (π½ Cn πΎ)) |
3 | | cnco 22761 |
. . 3
β’ ((πΉ β (II Cn π½) β§ π β (π½ Cn πΎ)) β (π β πΉ) β (II Cn πΎ)) |
4 | 1, 2, 3 | syl2anc 584 |
. 2
β’ (π β (π β πΉ) β (II Cn πΎ)) |
5 | | phtpyco2.g |
. . 3
β’ (π β πΊ β (II Cn π½)) |
6 | | cnco 22761 |
. . 3
β’ ((πΊ β (II Cn π½) β§ π β (π½ Cn πΎ)) β (π β πΊ) β (II Cn πΎ)) |
7 | 5, 2, 6 | syl2anc 584 |
. 2
β’ (π β (π β πΊ) β (II Cn πΎ)) |
8 | 1, 5 | phtpyhtpy 24489 |
. . . 4
β’ (π β (πΉ(PHtpyβπ½)πΊ) β (πΉ(II Htpy π½)πΊ)) |
9 | | phtpyco2.h |
. . . 4
β’ (π β π» β (πΉ(PHtpyβπ½)πΊ)) |
10 | 8, 9 | sseldd 3982 |
. . 3
β’ (π β π» β (πΉ(II Htpy π½)πΊ)) |
11 | 1, 5, 2, 10 | htpyco2 24486 |
. 2
β’ (π β (π β π») β ((π β πΉ)(II Htpy πΎ)(π β πΊ))) |
12 | 1, 5, 9 | phtpyi 24491 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β ((0π»π ) = (πΉβ0) β§ (1π»π ) = (πΉβ1))) |
13 | 12 | simpld 495 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (0π»π ) = (πΉβ0)) |
14 | 13 | fveq2d 6892 |
. . 3
β’ ((π β§ π β (0[,]1)) β (πβ(0π»π )) = (πβ(πΉβ0))) |
15 | | iitopon 24386 |
. . . . . . 7
β’ II β
(TopOnβ(0[,]1)) |
16 | | txtopon 23086 |
. . . . . . 7
β’ ((II
β (TopOnβ(0[,]1)) β§ II β (TopOnβ(0[,]1))) β (II
Γt II) β (TopOnβ((0[,]1) Γ
(0[,]1)))) |
17 | 15, 15, 16 | mp2an 690 |
. . . . . 6
β’ (II
Γt II) β (TopOnβ((0[,]1) Γ
(0[,]1))) |
18 | | cntop2 22736 |
. . . . . . . 8
β’ (πΉ β (II Cn π½) β π½ β Top) |
19 | 1, 18 | syl 17 |
. . . . . . 7
β’ (π β π½ β Top) |
20 | | toptopon2 22411 |
. . . . . . 7
β’ (π½ β Top β π½ β (TopOnββͺ π½)) |
21 | 19, 20 | sylib 217 |
. . . . . 6
β’ (π β π½ β (TopOnββͺ π½)) |
22 | 1, 5 | phtpycn 24490 |
. . . . . . 7
β’ (π β (πΉ(PHtpyβπ½)πΊ) β ((II Γt II) Cn
π½)) |
23 | 22, 9 | sseldd 3982 |
. . . . . 6
β’ (π β π» β ((II Γt II) Cn
π½)) |
24 | | cnf2 22744 |
. . . . . 6
β’ (((II
Γt II) β (TopOnβ((0[,]1) Γ (0[,]1))) β§
π½ β (TopOnββͺ π½)
β§ π» β ((II
Γt II) Cn π½)) β π»:((0[,]1) Γ (0[,]1))βΆβͺ π½) |
25 | 17, 21, 23, 24 | mp3an2i 1466 |
. . . . 5
β’ (π β π»:((0[,]1) Γ (0[,]1))βΆβͺ π½) |
26 | | 0elunit 13442 |
. . . . . 6
β’ 0 β
(0[,]1) |
27 | | simpr 485 |
. . . . . 6
β’ ((π β§ π β (0[,]1)) β π β (0[,]1)) |
28 | | opelxpi 5712 |
. . . . . 6
β’ ((0
β (0[,]1) β§ π
β (0[,]1)) β β¨0, π β© β ((0[,]1) Γ
(0[,]1))) |
29 | 26, 27, 28 | sylancr 587 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β β¨0, π β© β ((0[,]1) Γ
(0[,]1))) |
30 | | fvco3 6987 |
. . . . 5
β’ ((π»:((0[,]1) Γ
(0[,]1))βΆβͺ π½ β§ β¨0, π β© β ((0[,]1) Γ (0[,]1)))
β ((π β π»)ββ¨0, π β©) = (πβ(π»ββ¨0, π β©))) |
31 | 25, 29, 30 | syl2an2r 683 |
. . . 4
β’ ((π β§ π β (0[,]1)) β ((π β π»)ββ¨0, π β©) = (πβ(π»ββ¨0, π β©))) |
32 | | df-ov 7408 |
. . . 4
β’ (0(π β π»)π ) = ((π β π»)ββ¨0, π β©) |
33 | | df-ov 7408 |
. . . . 5
β’ (0π»π ) = (π»ββ¨0, π β©) |
34 | 33 | fveq2i 6891 |
. . . 4
β’ (πβ(0π»π )) = (πβ(π»ββ¨0, π β©)) |
35 | 31, 32, 34 | 3eqtr4g 2797 |
. . 3
β’ ((π β§ π β (0[,]1)) β (0(π β π»)π ) = (πβ(0π»π ))) |
36 | | iiuni 24388 |
. . . . . . 7
β’ (0[,]1) =
βͺ II |
37 | | eqid 2732 |
. . . . . . 7
β’ βͺ π½ =
βͺ π½ |
38 | 36, 37 | cnf 22741 |
. . . . . 6
β’ (πΉ β (II Cn π½) β πΉ:(0[,]1)βΆβͺ
π½) |
39 | 1, 38 | syl 17 |
. . . . 5
β’ (π β πΉ:(0[,]1)βΆβͺ
π½) |
40 | 39 | adantr 481 |
. . . 4
β’ ((π β§ π β (0[,]1)) β πΉ:(0[,]1)βΆβͺ
π½) |
41 | | fvco3 6987 |
. . . 4
β’ ((πΉ:(0[,]1)βΆβͺ π½
β§ 0 β (0[,]1)) β ((π β πΉ)β0) = (πβ(πΉβ0))) |
42 | 40, 26, 41 | sylancl 586 |
. . 3
β’ ((π β§ π β (0[,]1)) β ((π β πΉ)β0) = (πβ(πΉβ0))) |
43 | 14, 35, 42 | 3eqtr4d 2782 |
. 2
β’ ((π β§ π β (0[,]1)) β (0(π β π»)π ) = ((π β πΉ)β0)) |
44 | 12 | simprd 496 |
. . . 4
β’ ((π β§ π β (0[,]1)) β (1π»π ) = (πΉβ1)) |
45 | 44 | fveq2d 6892 |
. . 3
β’ ((π β§ π β (0[,]1)) β (πβ(1π»π )) = (πβ(πΉβ1))) |
46 | | 1elunit 13443 |
. . . . . 6
β’ 1 β
(0[,]1) |
47 | | opelxpi 5712 |
. . . . . 6
β’ ((1
β (0[,]1) β§ π
β (0[,]1)) β β¨1, π β© β ((0[,]1) Γ
(0[,]1))) |
48 | 46, 27, 47 | sylancr 587 |
. . . . 5
β’ ((π β§ π β (0[,]1)) β β¨1, π β© β ((0[,]1) Γ
(0[,]1))) |
49 | | fvco3 6987 |
. . . . 5
β’ ((π»:((0[,]1) Γ
(0[,]1))βΆβͺ π½ β§ β¨1, π β© β ((0[,]1) Γ (0[,]1)))
β ((π β π»)ββ¨1, π β©) = (πβ(π»ββ¨1, π β©))) |
50 | 25, 48, 49 | syl2an2r 683 |
. . . 4
β’ ((π β§ π β (0[,]1)) β ((π β π»)ββ¨1, π β©) = (πβ(π»ββ¨1, π β©))) |
51 | | df-ov 7408 |
. . . 4
β’ (1(π β π»)π ) = ((π β π»)ββ¨1, π β©) |
52 | | df-ov 7408 |
. . . . 5
β’ (1π»π ) = (π»ββ¨1, π β©) |
53 | 52 | fveq2i 6891 |
. . . 4
β’ (πβ(1π»π )) = (πβ(π»ββ¨1, π β©)) |
54 | 50, 51, 53 | 3eqtr4g 2797 |
. . 3
β’ ((π β§ π β (0[,]1)) β (1(π β π»)π ) = (πβ(1π»π ))) |
55 | | fvco3 6987 |
. . . 4
β’ ((πΉ:(0[,]1)βΆβͺ π½
β§ 1 β (0[,]1)) β ((π β πΉ)β1) = (πβ(πΉβ1))) |
56 | 40, 46, 55 | sylancl 586 |
. . 3
β’ ((π β§ π β (0[,]1)) β ((π β πΉ)β1) = (πβ(πΉβ1))) |
57 | 45, 54, 56 | 3eqtr4d 2782 |
. 2
β’ ((π β§ π β (0[,]1)) β (1(π β π»)π ) = ((π β πΉ)β1)) |
58 | 4, 7, 11, 43, 57 | isphtpyd 24493 |
1
β’ (π β (π β π») β ((π β πΉ)(PHtpyβπΎ)(π β πΊ))) |