MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   GIF version

Theorem phtpyco2 24965
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f (𝜑𝐹 ∈ (II Cn 𝐽))
phtpyco2.g (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
phtpyco2.h (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))

Proof of Theorem phtpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 cnco 23219 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
41, 2, 3syl2anc 582 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
5 phtpyco2.g . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cnco 23219 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
75, 2, 6syl2anc 582 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
81, 5phtpyhtpy 24957 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
9 phtpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
108, 9sseldd 3977 . . 3 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
111, 5, 2, 10htpyco2 24954 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(II Htpy 𝐾)(𝑃𝐺)))
121, 5, 9phtpyi 24959 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
1312simpld 493 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
1413fveq2d 6900 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0)))
15 iitopon 24848 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
16 txtopon 23544 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
1715, 15, 16mp2an 690 . . . . . 6 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
18 cntop2 23194 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
191, 18syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
20 toptopon2 22869 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2119, 20sylib 217 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
221, 5phtpycn 24958 . . . . . . 7 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽))
2322, 9sseldd 3977 . . . . . 6 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
24 cnf2 23202 . . . . . 6 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐻 ∈ ((II ×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
2517, 21, 23, 24mp3an2i 1462 . . . . 5 (𝜑𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
26 0elunit 13486 . . . . . 6 0 ∈ (0[,]1)
27 simpr 483 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
28 opelxpi 5715 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
2926, 27, 28sylancr 585 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
30 fvco3 6996 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
3125, 29, 30syl2an2r 683 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
32 df-ov 7422 . . . 4 (0(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨0, 𝑠⟩)
33 df-ov 7422 . . . . 5 (0𝐻𝑠) = (𝐻‘⟨0, 𝑠⟩)
3433fveq2i 6899 . . . 4 (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘⟨0, 𝑠⟩))
3531, 32, 343eqtr4g 2790 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = (𝑃‘(0𝐻𝑠)))
36 iiuni 24850 . . . . . . 7 (0[,]1) = II
37 eqid 2725 . . . . . . 7 𝐽 = 𝐽
3836, 37cnf 23199 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
391, 38syl 17 . . . . 5 (𝜑𝐹:(0[,]1)⟶ 𝐽)
4039adantr 479 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶ 𝐽)
41 fvco3 6996 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4240, 26, 41sylancl 584 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4314, 35, 423eqtr4d 2775 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = ((𝑃𝐹)‘0))
4412simprd 494 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
4544fveq2d 6900 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1)))
46 1elunit 13487 . . . . . 6 1 ∈ (0[,]1)
47 opelxpi 5715 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
4846, 27, 47sylancr 585 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
49 fvco3 6996 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
5025, 48, 49syl2an2r 683 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
51 df-ov 7422 . . . 4 (1(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨1, 𝑠⟩)
52 df-ov 7422 . . . . 5 (1𝐻𝑠) = (𝐻‘⟨1, 𝑠⟩)
5352fveq2i 6899 . . . 4 (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘⟨1, 𝑠⟩))
5450, 51, 533eqtr4g 2790 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = (𝑃‘(1𝐻𝑠)))
55 fvco3 6996 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5640, 46, 55sylancl 584 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5745, 54, 563eqtr4d 2775 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = ((𝑃𝐹)‘1))
584, 7, 11, 43, 57isphtpyd 24961 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cop 4636   cuni 4909   × cxp 5676  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  0cc0 11145  1c1 11146  [,]cicc 13367  Topctop 22844  TopOnctopon 22861   Cn ccn 23177   ×t ctx 23513  IIcii 24844   Htpy chtpy 24942  PHtpycphtpy 24943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222  ax-pre-sup 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9472  df-inf 9473  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-icc 13371  df-seq 14008  df-exp 14068  df-cj 15087  df-re 15088  df-im 15089  df-sqrt 15223  df-abs 15224  df-topgen 17433  df-psmet 21293  df-xmet 21294  df-met 21295  df-bl 21296  df-mopn 21297  df-top 22845  df-topon 22862  df-bases 22898  df-cn 23180  df-tx 23515  df-ii 24846  df-htpy 24945  df-phtpy 24946
This theorem is referenced by:  phtpcco2  24975
  Copyright terms: Public domain W3C validator