Step | Hyp | Ref
| Expression |
1 | | phtpyco2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
2 | | phtpyco2.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
3 | | cnco 22407 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
4 | 1, 2, 3 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
5 | | phtpyco2.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
6 | | cnco 22407 |
. . 3
⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
7 | 5, 2, 6 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
8 | 1, 5 | phtpyhtpy 24135 |
. . . 4
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
9 | | phtpyco2.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
10 | 8, 9 | sseldd 3927 |
. . 3
⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
11 | 1, 5, 2, 10 | htpyco2 24132 |
. 2
⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(II Htpy 𝐾)(𝑃 ∘ 𝐺))) |
12 | 1, 5, 9 | phtpyi 24137 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
13 | 12 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) |
14 | 13 | fveq2d 6773 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0))) |
15 | | iitopon 24032 |
. . . . . . 7
⊢ II ∈
(TopOn‘(0[,]1)) |
16 | | txtopon 22732 |
. . . . . . 7
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II
×t II) ∈ (TopOn‘((0[,]1) ×
(0[,]1)))) |
17 | 15, 15, 16 | mp2an 689 |
. . . . . 6
⊢ (II
×t II) ∈ (TopOn‘((0[,]1) ×
(0[,]1))) |
18 | | cntop2 22382 |
. . . . . . . 8
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
19 | 1, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
20 | | toptopon2 22057 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
21 | 19, 20 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
22 | 1, 5 | phtpycn 24136 |
. . . . . . 7
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn
𝐽)) |
23 | 22, 9 | sseldd 3927 |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ ((II ×t II) Cn
𝐽)) |
24 | | cnf2 22390 |
. . . . . 6
⊢ (((II
×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧
𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐻 ∈ ((II
×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
25 | 17, 21, 23, 24 | mp3an2i 1465 |
. . . . 5
⊢ (𝜑 → 𝐻:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
26 | | 0elunit 13192 |
. . . . . 6
⊢ 0 ∈
(0[,]1) |
27 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
28 | | opelxpi 5626 |
. . . . . 6
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → 〈0, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
29 | 26, 27, 28 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈0, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
30 | | fvco3 6862 |
. . . . 5
⊢ ((𝐻:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 ∧ 〈0, 𝑠〉 ∈ ((0[,]1) × (0[,]1)))
→ ((𝑃 ∘ 𝐻)‘〈0, 𝑠〉) = (𝑃‘(𝐻‘〈0, 𝑠〉))) |
31 | 25, 29, 30 | syl2an2r 682 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐻)‘〈0, 𝑠〉) = (𝑃‘(𝐻‘〈0, 𝑠〉))) |
32 | | df-ov 7272 |
. . . 4
⊢ (0(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐻)‘〈0, 𝑠〉) |
33 | | df-ov 7272 |
. . . . 5
⊢ (0𝐻𝑠) = (𝐻‘〈0, 𝑠〉) |
34 | 33 | fveq2i 6772 |
. . . 4
⊢ (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘〈0, 𝑠〉)) |
35 | 31, 32, 34 | 3eqtr4g 2805 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0(𝑃 ∘ 𝐻)𝑠) = (𝑃‘(0𝐻𝑠))) |
36 | | iiuni 24034 |
. . . . . . 7
⊢ (0[,]1) =
∪ II |
37 | | eqid 2740 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
38 | 36, 37 | cnf 22387 |
. . . . . 6
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪
𝐽) |
39 | 1, 38 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(0[,]1)⟶∪
𝐽) |
40 | 39 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶∪
𝐽) |
41 | | fvco3 6862 |
. . . 4
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 0 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘0) = (𝑃‘(𝐹‘0))) |
42 | 40, 26, 41 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘0) = (𝑃‘(𝐹‘0))) |
43 | 14, 35, 42 | 3eqtr4d 2790 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐹)‘0)) |
44 | 12 | simprd 496 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) |
45 | 44 | fveq2d 6773 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1))) |
46 | | 1elunit 13193 |
. . . . . 6
⊢ 1 ∈
(0[,]1) |
47 | | opelxpi 5626 |
. . . . . 6
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → 〈1, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
48 | 46, 27, 47 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈1, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
49 | | fvco3 6862 |
. . . . 5
⊢ ((𝐻:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 ∧ 〈1, 𝑠〉 ∈ ((0[,]1) × (0[,]1)))
→ ((𝑃 ∘ 𝐻)‘〈1, 𝑠〉) = (𝑃‘(𝐻‘〈1, 𝑠〉))) |
50 | 25, 48, 49 | syl2an2r 682 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐻)‘〈1, 𝑠〉) = (𝑃‘(𝐻‘〈1, 𝑠〉))) |
51 | | df-ov 7272 |
. . . 4
⊢ (1(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐻)‘〈1, 𝑠〉) |
52 | | df-ov 7272 |
. . . . 5
⊢ (1𝐻𝑠) = (𝐻‘〈1, 𝑠〉) |
53 | 52 | fveq2i 6772 |
. . . 4
⊢ (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘〈1, 𝑠〉)) |
54 | 50, 51, 53 | 3eqtr4g 2805 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1(𝑃 ∘ 𝐻)𝑠) = (𝑃‘(1𝐻𝑠))) |
55 | | fvco3 6862 |
. . . 4
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 1 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘1) = (𝑃‘(𝐹‘1))) |
56 | 40, 46, 55 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘1) = (𝑃‘(𝐹‘1))) |
57 | 45, 54, 56 | 3eqtr4d 2790 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐹)‘1)) |
58 | 4, 7, 11, 43, 57 | isphtpyd 24139 |
1
⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) |