MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   GIF version

Theorem phtpyco2 25022
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f (𝜑𝐹 ∈ (II Cn 𝐽))
phtpyco2.g (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
phtpyco2.h (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))

Proof of Theorem phtpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 cnco 23274 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
5 phtpyco2.g . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cnco 23274 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
75, 2, 6syl2anc 584 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
81, 5phtpyhtpy 25014 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
9 phtpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
108, 9sseldd 3984 . . 3 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
111, 5, 2, 10htpyco2 25011 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(II Htpy 𝐾)(𝑃𝐺)))
121, 5, 9phtpyi 25016 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
1312simpld 494 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
1413fveq2d 6910 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0)))
15 iitopon 24905 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
16 txtopon 23599 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
1715, 15, 16mp2an 692 . . . . . 6 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
18 cntop2 23249 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
191, 18syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
20 toptopon2 22924 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2119, 20sylib 218 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
221, 5phtpycn 25015 . . . . . . 7 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽))
2322, 9sseldd 3984 . . . . . 6 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
24 cnf2 23257 . . . . . 6 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐻 ∈ ((II ×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
2517, 21, 23, 24mp3an2i 1468 . . . . 5 (𝜑𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
26 0elunit 13509 . . . . . 6 0 ∈ (0[,]1)
27 simpr 484 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
28 opelxpi 5722 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
2926, 27, 28sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
30 fvco3 7008 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
3125, 29, 30syl2an2r 685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
32 df-ov 7434 . . . 4 (0(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨0, 𝑠⟩)
33 df-ov 7434 . . . . 5 (0𝐻𝑠) = (𝐻‘⟨0, 𝑠⟩)
3433fveq2i 6909 . . . 4 (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘⟨0, 𝑠⟩))
3531, 32, 343eqtr4g 2802 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = (𝑃‘(0𝐻𝑠)))
36 iiuni 24907 . . . . . . 7 (0[,]1) = II
37 eqid 2737 . . . . . . 7 𝐽 = 𝐽
3836, 37cnf 23254 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
391, 38syl 17 . . . . 5 (𝜑𝐹:(0[,]1)⟶ 𝐽)
4039adantr 480 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶ 𝐽)
41 fvco3 7008 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4240, 26, 41sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4314, 35, 423eqtr4d 2787 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = ((𝑃𝐹)‘0))
4412simprd 495 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
4544fveq2d 6910 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1)))
46 1elunit 13510 . . . . . 6 1 ∈ (0[,]1)
47 opelxpi 5722 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
4846, 27, 47sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
49 fvco3 7008 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
5025, 48, 49syl2an2r 685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
51 df-ov 7434 . . . 4 (1(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨1, 𝑠⟩)
52 df-ov 7434 . . . . 5 (1𝐻𝑠) = (𝐻‘⟨1, 𝑠⟩)
5352fveq2i 6909 . . . 4 (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘⟨1, 𝑠⟩))
5450, 51, 533eqtr4g 2802 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = (𝑃‘(1𝐻𝑠)))
55 fvco3 7008 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5640, 46, 55sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5745, 54, 563eqtr4d 2787 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = ((𝑃𝐹)‘1))
584, 7, 11, 43, 57isphtpyd 25018 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cop 4632   cuni 4907   × cxp 5683  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  [,]cicc 13390  Topctop 22899  TopOnctopon 22916   Cn ccn 23232   ×t ctx 23568  IIcii 24901   Htpy chtpy 24999  PHtpycphtpy 25000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cn 23235  df-tx 23570  df-ii 24903  df-htpy 25002  df-phtpy 25003
This theorem is referenced by:  phtpcco2  25032
  Copyright terms: Public domain W3C validator