| Step | Hyp | Ref
| Expression |
| 1 | | phtpyco2.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
| 2 | | phtpyco2.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) |
| 3 | | cnco 23209 |
. . 3
⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
| 4 | 1, 2, 3 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑃 ∘ 𝐹) ∈ (II Cn 𝐾)) |
| 5 | | phtpyco2.g |
. . 3
⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| 6 | | cnco 23209 |
. . 3
⊢ ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
| 7 | 5, 2, 6 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑃 ∘ 𝐺) ∈ (II Cn 𝐾)) |
| 8 | 1, 5 | phtpyhtpy 24937 |
. . . 4
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
| 9 | | phtpyco2.h |
. . . 4
⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
| 10 | 8, 9 | sseldd 3964 |
. . 3
⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
| 11 | 1, 5, 2, 10 | htpyco2 24934 |
. 2
⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(II Htpy 𝐾)(𝑃 ∘ 𝐺))) |
| 12 | 1, 5, 9 | phtpyi 24939 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))) |
| 13 | 12 | simpld 494 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) |
| 14 | 13 | fveq2d 6885 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0))) |
| 15 | | iitopon 24828 |
. . . . . . 7
⊢ II ∈
(TopOn‘(0[,]1)) |
| 16 | | txtopon 23534 |
. . . . . . 7
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II
×t II) ∈ (TopOn‘((0[,]1) ×
(0[,]1)))) |
| 17 | 15, 15, 16 | mp2an 692 |
. . . . . 6
⊢ (II
×t II) ∈ (TopOn‘((0[,]1) ×
(0[,]1))) |
| 18 | | cntop2 23184 |
. . . . . . . 8
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top) |
| 19 | 1, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
| 20 | | toptopon2 22861 |
. . . . . . 7
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 21 | 19, 20 | sylib 218 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 22 | 1, 5 | phtpycn 24938 |
. . . . . . 7
⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn
𝐽)) |
| 23 | 22, 9 | sseldd 3964 |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ ((II ×t II) Cn
𝐽)) |
| 24 | | cnf2 23192 |
. . . . . 6
⊢ (((II
×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧
𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐻 ∈ ((II
×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
| 25 | 17, 21, 23, 24 | mp3an2i 1468 |
. . . . 5
⊢ (𝜑 → 𝐻:((0[,]1) × (0[,]1))⟶∪ 𝐽) |
| 26 | | 0elunit 13491 |
. . . . . 6
⊢ 0 ∈
(0[,]1) |
| 27 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1)) |
| 28 | | opelxpi 5696 |
. . . . . 6
⊢ ((0
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → 〈0, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
| 29 | 26, 27, 28 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈0, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
| 30 | | fvco3 6983 |
. . . . 5
⊢ ((𝐻:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 ∧ 〈0, 𝑠〉 ∈ ((0[,]1) × (0[,]1)))
→ ((𝑃 ∘ 𝐻)‘〈0, 𝑠〉) = (𝑃‘(𝐻‘〈0, 𝑠〉))) |
| 31 | 25, 29, 30 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐻)‘〈0, 𝑠〉) = (𝑃‘(𝐻‘〈0, 𝑠〉))) |
| 32 | | df-ov 7413 |
. . . 4
⊢ (0(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐻)‘〈0, 𝑠〉) |
| 33 | | df-ov 7413 |
. . . . 5
⊢ (0𝐻𝑠) = (𝐻‘〈0, 𝑠〉) |
| 34 | 33 | fveq2i 6884 |
. . . 4
⊢ (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘〈0, 𝑠〉)) |
| 35 | 31, 32, 34 | 3eqtr4g 2796 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0(𝑃 ∘ 𝐻)𝑠) = (𝑃‘(0𝐻𝑠))) |
| 36 | | iiuni 24830 |
. . . . . . 7
⊢ (0[,]1) =
∪ II |
| 37 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 38 | 36, 37 | cnf 23189 |
. . . . . 6
⊢ (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶∪
𝐽) |
| 39 | 1, 38 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐹:(0[,]1)⟶∪
𝐽) |
| 40 | 39 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶∪
𝐽) |
| 41 | | fvco3 6983 |
. . . 4
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 0 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘0) = (𝑃‘(𝐹‘0))) |
| 42 | 40, 26, 41 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘0) = (𝑃‘(𝐹‘0))) |
| 43 | 14, 35, 42 | 3eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐹)‘0)) |
| 44 | 12 | simprd 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) |
| 45 | 44 | fveq2d 6885 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1))) |
| 46 | | 1elunit 13492 |
. . . . . 6
⊢ 1 ∈
(0[,]1) |
| 47 | | opelxpi 5696 |
. . . . . 6
⊢ ((1
∈ (0[,]1) ∧ 𝑠
∈ (0[,]1)) → 〈1, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
| 48 | 46, 27, 47 | sylancr 587 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → 〈1, 𝑠〉 ∈ ((0[,]1) ×
(0[,]1))) |
| 49 | | fvco3 6983 |
. . . . 5
⊢ ((𝐻:((0[,]1) ×
(0[,]1))⟶∪ 𝐽 ∧ 〈1, 𝑠〉 ∈ ((0[,]1) × (0[,]1)))
→ ((𝑃 ∘ 𝐻)‘〈1, 𝑠〉) = (𝑃‘(𝐻‘〈1, 𝑠〉))) |
| 50 | 25, 48, 49 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐻)‘〈1, 𝑠〉) = (𝑃‘(𝐻‘〈1, 𝑠〉))) |
| 51 | | df-ov 7413 |
. . . 4
⊢ (1(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐻)‘〈1, 𝑠〉) |
| 52 | | df-ov 7413 |
. . . . 5
⊢ (1𝐻𝑠) = (𝐻‘〈1, 𝑠〉) |
| 53 | 52 | fveq2i 6884 |
. . . 4
⊢ (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘〈1, 𝑠〉)) |
| 54 | 50, 51, 53 | 3eqtr4g 2796 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1(𝑃 ∘ 𝐻)𝑠) = (𝑃‘(1𝐻𝑠))) |
| 55 | | fvco3 6983 |
. . . 4
⊢ ((𝐹:(0[,]1)⟶∪ 𝐽
∧ 1 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘1) = (𝑃‘(𝐹‘1))) |
| 56 | 40, 46, 55 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → ((𝑃 ∘ 𝐹)‘1) = (𝑃‘(𝐹‘1))) |
| 57 | 45, 54, 56 | 3eqtr4d 2781 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1(𝑃 ∘ 𝐻)𝑠) = ((𝑃 ∘ 𝐹)‘1)) |
| 58 | 4, 7, 11, 43, 57 | isphtpyd 24941 |
1
⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) |