MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpyco2 Structured version   Visualization version   GIF version

Theorem phtpyco2 24916
Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypotheses
Ref Expression
phtpyco2.f (𝜑𝐹 ∈ (II Cn 𝐽))
phtpyco2.g (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyco2.p (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
phtpyco2.h (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpyco2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))

Proof of Theorem phtpyco2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 phtpyco2.f . . 3 (𝜑𝐹 ∈ (II Cn 𝐽))
2 phtpyco2.p . . 3 (𝜑𝑃 ∈ (𝐽 Cn 𝐾))
3 cnco 23181 . . 3 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐹) ∈ (II Cn 𝐾))
41, 2, 3syl2anc 584 . 2 (𝜑 → (𝑃𝐹) ∈ (II Cn 𝐾))
5 phtpyco2.g . . 3 (𝜑𝐺 ∈ (II Cn 𝐽))
6 cnco 23181 . . 3 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑃 ∈ (𝐽 Cn 𝐾)) → (𝑃𝐺) ∈ (II Cn 𝐾))
75, 2, 6syl2anc 584 . 2 (𝜑 → (𝑃𝐺) ∈ (II Cn 𝐾))
81, 5phtpyhtpy 24908 . . . 4 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
9 phtpyco2.h . . . 4 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
108, 9sseldd 3930 . . 3 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
111, 5, 2, 10htpyco2 24905 . 2 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(II Htpy 𝐾)(𝑃𝐺)))
121, 5, 9phtpyi 24910 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))
1312simpld 494 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0))
1413fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐹‘0)))
15 iitopon 24799 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
16 txtopon 23506 . . . . . . 7 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
1715, 15, 16mp2an 692 . . . . . 6 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
18 cntop2 23156 . . . . . . . 8 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
191, 18syl 17 . . . . . . 7 (𝜑𝐽 ∈ Top)
20 toptopon2 22833 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2119, 20sylib 218 . . . . . 6 (𝜑𝐽 ∈ (TopOn‘ 𝐽))
221, 5phtpycn 24909 . . . . . . 7 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽))
2322, 9sseldd 3930 . . . . . 6 (𝜑𝐻 ∈ ((II ×t II) Cn 𝐽))
24 cnf2 23164 . . . . . 6 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐻 ∈ ((II ×t II) Cn 𝐽)) → 𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
2517, 21, 23, 24mp3an2i 1468 . . . . 5 (𝜑𝐻:((0[,]1) × (0[,]1))⟶ 𝐽)
26 0elunit 13369 . . . . . 6 0 ∈ (0[,]1)
27 simpr 484 . . . . . 6 ((𝜑𝑠 ∈ (0[,]1)) → 𝑠 ∈ (0[,]1))
28 opelxpi 5651 . . . . . 6 ((0 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
2926, 27, 28sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
30 fvco3 6921 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨0, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
3125, 29, 30syl2an2r 685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨0, 𝑠⟩) = (𝑃‘(𝐻‘⟨0, 𝑠⟩)))
32 df-ov 7349 . . . 4 (0(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨0, 𝑠⟩)
33 df-ov 7349 . . . . 5 (0𝐻𝑠) = (𝐻‘⟨0, 𝑠⟩)
3433fveq2i 6825 . . . 4 (𝑃‘(0𝐻𝑠)) = (𝑃‘(𝐻‘⟨0, 𝑠⟩))
3531, 32, 343eqtr4g 2791 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = (𝑃‘(0𝐻𝑠)))
36 iiuni 24801 . . . . . . 7 (0[,]1) = II
37 eqid 2731 . . . . . . 7 𝐽 = 𝐽
3836, 37cnf 23161 . . . . . 6 (𝐹 ∈ (II Cn 𝐽) → 𝐹:(0[,]1)⟶ 𝐽)
391, 38syl 17 . . . . 5 (𝜑𝐹:(0[,]1)⟶ 𝐽)
4039adantr 480 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → 𝐹:(0[,]1)⟶ 𝐽)
41 fvco3 6921 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 0 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4240, 26, 41sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘0) = (𝑃‘(𝐹‘0)))
4314, 35, 423eqtr4d 2776 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (0(𝑃𝐻)𝑠) = ((𝑃𝐹)‘0))
4412simprd 495 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1))
4544fveq2d 6826 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐹‘1)))
46 1elunit 13370 . . . . . 6 1 ∈ (0[,]1)
47 opelxpi 5651 . . . . . 6 ((1 ∈ (0[,]1) ∧ 𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
4846, 27, 47sylancr 587 . . . . 5 ((𝜑𝑠 ∈ (0[,]1)) → ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1)))
49 fvco3 6921 . . . . 5 ((𝐻:((0[,]1) × (0[,]1))⟶ 𝐽 ∧ ⟨1, 𝑠⟩ ∈ ((0[,]1) × (0[,]1))) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
5025, 48, 49syl2an2r 685 . . . 4 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐻)‘⟨1, 𝑠⟩) = (𝑃‘(𝐻‘⟨1, 𝑠⟩)))
51 df-ov 7349 . . . 4 (1(𝑃𝐻)𝑠) = ((𝑃𝐻)‘⟨1, 𝑠⟩)
52 df-ov 7349 . . . . 5 (1𝐻𝑠) = (𝐻‘⟨1, 𝑠⟩)
5352fveq2i 6825 . . . 4 (𝑃‘(1𝐻𝑠)) = (𝑃‘(𝐻‘⟨1, 𝑠⟩))
5450, 51, 533eqtr4g 2791 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = (𝑃‘(1𝐻𝑠)))
55 fvco3 6921 . . . 4 ((𝐹:(0[,]1)⟶ 𝐽 ∧ 1 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5640, 46, 55sylancl 586 . . 3 ((𝜑𝑠 ∈ (0[,]1)) → ((𝑃𝐹)‘1) = (𝑃‘(𝐹‘1)))
5745, 54, 563eqtr4d 2776 . 2 ((𝜑𝑠 ∈ (0[,]1)) → (1(𝑃𝐻)𝑠) = ((𝑃𝐹)‘1))
584, 7, 11, 43, 57isphtpyd 24912 1 (𝜑 → (𝑃𝐻) ∈ ((𝑃𝐹)(PHtpy‘𝐾)(𝑃𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cop 4579   cuni 4856   × cxp 5612  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007  [,]cicc 13248  Topctop 22808  TopOnctopon 22825   Cn ccn 23139   ×t ctx 23475  IIcii 24795   Htpy chtpy 24893  PHtpycphtpy 24894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-bases 22861  df-cn 23142  df-tx 23477  df-ii 24797  df-htpy 24896  df-phtpy 24897
This theorem is referenced by:  phtpcco2  24926
  Copyright terms: Public domain W3C validator