MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpy01 Structured version   Visualization version   GIF version

Theorem phtpy01 23740
Description: Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyi.1 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpy01 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))

Proof of Theorem phtpy01
StepHypRef Expression
1 1elunit 12947 . . . . 5 1 ∈ (0[,]1)
2 isphtpy.2 . . . . . 6 (𝜑𝐹 ∈ (II Cn 𝐽))
3 isphtpy.3 . . . . . 6 (𝜑𝐺 ∈ (II Cn 𝐽))
4 phtpyi.1 . . . . . 6 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
52, 3, 4phtpyi 23739 . . . . 5 ((𝜑 ∧ 1 ∈ (0[,]1)) → ((0𝐻1) = (𝐹‘0) ∧ (1𝐻1) = (𝐹‘1)))
61, 5mpan2 691 . . . 4 (𝜑 → ((0𝐻1) = (𝐹‘0) ∧ (1𝐻1) = (𝐹‘1)))
76simpld 498 . . 3 (𝜑 → (0𝐻1) = (𝐹‘0))
8 0elunit 12946 . . . . 5 0 ∈ (0[,]1)
9 iitopon 23634 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
109a1i 11 . . . . . 6 (𝜑 → II ∈ (TopOn‘(0[,]1)))
112, 3phtpyhtpy 23737 . . . . . . 7 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
1211, 4sseldd 3879 . . . . . 6 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
1310, 2, 3, 12htpyi 23729 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → ((0𝐻0) = (𝐹‘0) ∧ (0𝐻1) = (𝐺‘0)))
148, 13mpan2 691 . . . 4 (𝜑 → ((0𝐻0) = (𝐹‘0) ∧ (0𝐻1) = (𝐺‘0)))
1514simprd 499 . . 3 (𝜑 → (0𝐻1) = (𝐺‘0))
167, 15eqtr3d 2776 . 2 (𝜑 → (𝐹‘0) = (𝐺‘0))
176simprd 499 . . 3 (𝜑 → (1𝐻1) = (𝐹‘1))
1810, 2, 3, 12htpyi 23729 . . . . 5 ((𝜑 ∧ 1 ∈ (0[,]1)) → ((1𝐻0) = (𝐹‘1) ∧ (1𝐻1) = (𝐺‘1)))
191, 18mpan2 691 . . . 4 (𝜑 → ((1𝐻0) = (𝐹‘1) ∧ (1𝐻1) = (𝐺‘1)))
2019simprd 499 . . 3 (𝜑 → (1𝐻1) = (𝐺‘1))
2117, 20eqtr3d 2776 . 2 (𝜑 → (𝐹‘1) = (𝐺‘1))
2216, 21jca 515 1 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cfv 6340  (class class class)co 7173  0cc0 10618  1c1 10619  [,]cicc 12827  TopOnctopon 21664   Cn ccn 21978  IIcii 23630   Htpy chtpy 23722  PHtpycphtpy 23723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-er 8323  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-sup 8982  df-inf 8983  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-z 12066  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-icc 12831  df-seq 13464  df-exp 13525  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-topgen 16823  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-top 21648  df-topon 21665  df-bases 21700  df-cn 21981  df-ii 23632  df-htpy 23725  df-phtpy 23726
This theorem is referenced by:  phtpycom  23743  phtpycc  23746  phtpc01  23751  pcohtpylem  23774  cvmliftphtlem  32853
  Copyright terms: Public domain W3C validator