![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > phtpy01 | Structured version Visualization version GIF version |
Description: Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
isphtpy.2 | ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
isphtpy.3 | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
phtpyi.1 | ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) |
Ref | Expression |
---|---|
phtpy01 | ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1elunit 12498 | . . . . 5 ⊢ 1 ∈ (0[,]1) | |
2 | isphtpy.2 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) | |
3 | isphtpy.3 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) | |
4 | phtpyi.1 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | |
5 | 2, 3, 4 | phtpyi 23003 | . . . . 5 ⊢ ((𝜑 ∧ 1 ∈ (0[,]1)) → ((0𝐻1) = (𝐹‘0) ∧ (1𝐻1) = (𝐹‘1))) |
6 | 1, 5 | mpan2 671 | . . . 4 ⊢ (𝜑 → ((0𝐻1) = (𝐹‘0) ∧ (1𝐻1) = (𝐹‘1))) |
7 | 6 | simpld 482 | . . 3 ⊢ (𝜑 → (0𝐻1) = (𝐹‘0)) |
8 | 0elunit 12497 | . . . . 5 ⊢ 0 ∈ (0[,]1) | |
9 | iitopon 22902 | . . . . . . 7 ⊢ II ∈ (TopOn‘(0[,]1)) | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ (𝜑 → II ∈ (TopOn‘(0[,]1))) |
11 | 2, 3 | phtpyhtpy 23001 | . . . . . . 7 ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) |
12 | 11, 4 | sseldd 3753 | . . . . . 6 ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) |
13 | 10, 2, 3, 12 | htpyi 22993 | . . . . 5 ⊢ ((𝜑 ∧ 0 ∈ (0[,]1)) → ((0𝐻0) = (𝐹‘0) ∧ (0𝐻1) = (𝐺‘0))) |
14 | 8, 13 | mpan2 671 | . . . 4 ⊢ (𝜑 → ((0𝐻0) = (𝐹‘0) ∧ (0𝐻1) = (𝐺‘0))) |
15 | 14 | simprd 483 | . . 3 ⊢ (𝜑 → (0𝐻1) = (𝐺‘0)) |
16 | 7, 15 | eqtr3d 2807 | . 2 ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) |
17 | 6 | simprd 483 | . . 3 ⊢ (𝜑 → (1𝐻1) = (𝐹‘1)) |
18 | 10, 2, 3, 12 | htpyi 22993 | . . . . 5 ⊢ ((𝜑 ∧ 1 ∈ (0[,]1)) → ((1𝐻0) = (𝐹‘1) ∧ (1𝐻1) = (𝐺‘1))) |
19 | 1, 18 | mpan2 671 | . . . 4 ⊢ (𝜑 → ((1𝐻0) = (𝐹‘1) ∧ (1𝐻1) = (𝐺‘1))) |
20 | 19 | simprd 483 | . . 3 ⊢ (𝜑 → (1𝐻1) = (𝐺‘1)) |
21 | 17, 20 | eqtr3d 2807 | . 2 ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) |
22 | 16, 21 | jca 501 | 1 ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6030 (class class class)co 6796 0cc0 10142 1c1 10143 [,]cicc 12383 TopOnctopon 20935 Cn ccn 21249 IIcii 22898 Htpy chtpy 22986 PHtpycphtpy 22987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-inf 8509 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-icc 12387 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-top 20919 df-topon 20936 df-bases 20971 df-cn 21252 df-ii 22900 df-htpy 22989 df-phtpy 22990 |
This theorem is referenced by: phtpycom 23007 phtpycc 23010 phtpc01 23015 pcohtpylem 23038 cvmliftphtlem 31637 |
Copyright terms: Public domain | W3C validator |