Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  phtpy01 Structured version   Visualization version   GIF version

Theorem phtpy01 23004
 Description: Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
phtpyi.1 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
Assertion
Ref Expression
phtpy01 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))

Proof of Theorem phtpy01
StepHypRef Expression
1 1elunit 12498 . . . . 5 1 ∈ (0[,]1)
2 isphtpy.2 . . . . . 6 (𝜑𝐹 ∈ (II Cn 𝐽))
3 isphtpy.3 . . . . . 6 (𝜑𝐺 ∈ (II Cn 𝐽))
4 phtpyi.1 . . . . . 6 (𝜑𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺))
52, 3, 4phtpyi 23003 . . . . 5 ((𝜑 ∧ 1 ∈ (0[,]1)) → ((0𝐻1) = (𝐹‘0) ∧ (1𝐻1) = (𝐹‘1)))
61, 5mpan2 671 . . . 4 (𝜑 → ((0𝐻1) = (𝐹‘0) ∧ (1𝐻1) = (𝐹‘1)))
76simpld 482 . . 3 (𝜑 → (0𝐻1) = (𝐹‘0))
8 0elunit 12497 . . . . 5 0 ∈ (0[,]1)
9 iitopon 22902 . . . . . . 7 II ∈ (TopOn‘(0[,]1))
109a1i 11 . . . . . 6 (𝜑 → II ∈ (TopOn‘(0[,]1)))
112, 3phtpyhtpy 23001 . . . . . . 7 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺))
1211, 4sseldd 3753 . . . . . 6 (𝜑𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺))
1310, 2, 3, 12htpyi 22993 . . . . 5 ((𝜑 ∧ 0 ∈ (0[,]1)) → ((0𝐻0) = (𝐹‘0) ∧ (0𝐻1) = (𝐺‘0)))
148, 13mpan2 671 . . . 4 (𝜑 → ((0𝐻0) = (𝐹‘0) ∧ (0𝐻1) = (𝐺‘0)))
1514simprd 483 . . 3 (𝜑 → (0𝐻1) = (𝐺‘0))
167, 15eqtr3d 2807 . 2 (𝜑 → (𝐹‘0) = (𝐺‘0))
176simprd 483 . . 3 (𝜑 → (1𝐻1) = (𝐹‘1))
1810, 2, 3, 12htpyi 22993 . . . . 5 ((𝜑 ∧ 1 ∈ (0[,]1)) → ((1𝐻0) = (𝐹‘1) ∧ (1𝐻1) = (𝐺‘1)))
191, 18mpan2 671 . . . 4 (𝜑 → ((1𝐻0) = (𝐹‘1) ∧ (1𝐻1) = (𝐺‘1)))
2019simprd 483 . . 3 (𝜑 → (1𝐻1) = (𝐺‘1))
2117, 20eqtr3d 2807 . 2 (𝜑 → (𝐹‘1) = (𝐺‘1))
2216, 21jca 501 1 (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  ‘cfv 6030  (class class class)co 6796  0cc0 10142  1c1 10143  [,]cicc 12383  TopOnctopon 20935   Cn ccn 21249  IIcii 22898   Htpy chtpy 22986  PHtpycphtpy 22987 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-icc 12387  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-topgen 16312  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-top 20919  df-topon 20936  df-bases 20971  df-cn 21252  df-ii 22900  df-htpy 22989  df-phtpy 22990 This theorem is referenced by:  phtpycom  23007  phtpycc  23010  phtpc01  23015  pcohtpylem  23038  cvmliftphtlem  31637
 Copyright terms: Public domain W3C validator