| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latabs1 | Structured version Visualization version GIF version | ||
| Description: Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 31452 analog.) (Contributed by NM, 8-Nov-2011.) |
| Ref | Expression |
|---|---|
| latabs1.b | ⊢ 𝐵 = (Base‘𝐾) |
| latabs1.j | ⊢ ∨ = (join‘𝐾) |
| latabs1.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latabs1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latabs1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2730 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 3 | latabs1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latmle1 18429 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌)(le‘𝐾)𝑋) |
| 5 | 1, 3 | latmcl 18405 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 6 | latabs1.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 7 | 1, 2, 6 | latleeqj2 18417 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
| 8 | 7 | 3com23 1126 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
| 9 | 5, 8 | syld3an3 1411 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
| 10 | 4, 9 | mpbid 232 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 lecple 17233 joincjn 18278 meetcmee 18279 Latclat 18396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-proset 18261 df-poset 18280 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-lat 18397 |
| This theorem is referenced by: latdisdlem 18461 cvrexchlem 39405 |
| Copyright terms: Public domain | W3C validator |