![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latabs1 | Structured version Visualization version GIF version |
Description: Lattice absorption law. From definition of lattice in [Kalmbach] p. 14. (chabs1 31444 analog.) (Contributed by NM, 8-Nov-2011.) |
Ref | Expression |
---|---|
latabs1.b | ⊢ 𝐵 = (Base‘𝐾) |
latabs1.j | ⊢ ∨ = (join‘𝐾) |
latabs1.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latabs1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latabs1.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2726 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
3 | latabs1.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
4 | 1, 2, 3 | latmle1 18482 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌)(le‘𝐾)𝑋) |
5 | 1, 3 | latmcl 18458 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
6 | latabs1.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
7 | 1, 2, 6 | latleeqj2 18470 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
8 | 7 | 3com23 1123 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
9 | 5, 8 | syld3an3 1406 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∧ 𝑌)(le‘𝐾)𝑋 ↔ (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋)) |
10 | 4, 9 | mpbid 231 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ (𝑋 ∧ 𝑌)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5144 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 lecple 17266 joincjn 18329 meetcmee 18330 Latclat 18449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-proset 18313 df-poset 18331 df-lub 18364 df-glb 18365 df-join 18366 df-meet 18367 df-lat 18450 |
This theorem is referenced by: latdisdlem 18514 cvrexchlem 39129 |
Copyright terms: Public domain | W3C validator |