![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latleeqj2 | Structured version Visualization version GIF version |
Description: Less-than-or-equal-to in terms of join. (chlejb2 28713 analog.) (Contributed by NM, 14-Nov-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latleeqj2 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑌 ∨ 𝑋) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 1, 2, 3 | latleeqj1 17272 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
5 | 1, 3 | latjcom 17268 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) |
6 | 5 | eqeq1d 2773 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) = 𝑌 ↔ (𝑌 ∨ 𝑋) = 𝑌)) |
7 | 4, 6 | bitrd 268 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑌 ∨ 𝑋) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ‘cfv 6032 (class class class)co 6794 Basecbs 16065 lecple 16157 joincjn 17153 Latclat 17254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-riota 6755 df-ov 6797 df-oprab 6798 df-preset 17137 df-poset 17155 df-lub 17183 df-glb 17184 df-join 17185 df-meet 17186 df-lat 17255 |
This theorem is referenced by: latabs1 17296 cvrat4 35252 islpln2a 35357 2atmat 35370 lvolnle3at 35391 islvol2aN 35401 dalem39 35520 cdleme11 36080 cdleme30a 36188 |
Copyright terms: Public domain | W3C validator |