Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  latdisdlem Structured version   Visualization version   GIF version

Theorem latdisdlem 17870
 Description: Lemma for latdisd 17871. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
latdisd.b 𝐵 = (Base‘𝐾)
latdisd.j = (join‘𝐾)
latdisd.m = (meet‘𝐾)
Assertion
Ref Expression
latdisdlem (𝐾 ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
Distinct variable groups:   𝑣,𝑢,𝑤,𝑥,𝑦,𝑧,𝐾   𝑢,𝐵,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑤,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑤,𝑥,𝑦,𝑧

Proof of Theorem latdisdlem
StepHypRef Expression
1 latdisd.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
2 latdisd.m . . . . . . . . 9 = (meet‘𝐾)
31, 2latmcl 17733 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑦𝐵) → (𝑥 𝑦) ∈ 𝐵)
433adant3r3 1181 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 𝑦) ∈ 𝐵)
5 simpr1 1191 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑥𝐵)
6 simpr3 1193 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑧𝐵)
7 oveq1 7162 . . . . . . . . 9 (𝑢 = (𝑥 𝑦) → (𝑢 (𝑣 𝑤)) = ((𝑥 𝑦) (𝑣 𝑤)))
8 oveq1 7162 . . . . . . . . . 10 (𝑢 = (𝑥 𝑦) → (𝑢 𝑣) = ((𝑥 𝑦) 𝑣))
9 oveq1 7162 . . . . . . . . . 10 (𝑢 = (𝑥 𝑦) → (𝑢 𝑤) = ((𝑥 𝑦) 𝑤))
108, 9oveq12d 7173 . . . . . . . . 9 (𝑢 = (𝑥 𝑦) → ((𝑢 𝑣) (𝑢 𝑤)) = (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤)))
117, 10eqeq12d 2774 . . . . . . . 8 (𝑢 = (𝑥 𝑦) → ((𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) ↔ ((𝑥 𝑦) (𝑣 𝑤)) = (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤))))
12 oveq1 7162 . . . . . . . . . 10 (𝑣 = 𝑥 → (𝑣 𝑤) = (𝑥 𝑤))
1312oveq2d 7171 . . . . . . . . 9 (𝑣 = 𝑥 → ((𝑥 𝑦) (𝑣 𝑤)) = ((𝑥 𝑦) (𝑥 𝑤)))
14 oveq2 7163 . . . . . . . . . 10 (𝑣 = 𝑥 → ((𝑥 𝑦) 𝑣) = ((𝑥 𝑦) 𝑥))
1514oveq1d 7170 . . . . . . . . 9 (𝑣 = 𝑥 → (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤)))
1613, 15eqeq12d 2774 . . . . . . . 8 (𝑣 = 𝑥 → (((𝑥 𝑦) (𝑣 𝑤)) = (((𝑥 𝑦) 𝑣) ((𝑥 𝑦) 𝑤)) ↔ ((𝑥 𝑦) (𝑥 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤))))
17 oveq2 7163 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑥 𝑤) = (𝑥 𝑧))
1817oveq2d 7171 . . . . . . . . 9 (𝑤 = 𝑧 → ((𝑥 𝑦) (𝑥 𝑤)) = ((𝑥 𝑦) (𝑥 𝑧)))
19 oveq2 7163 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑥 𝑦) 𝑤) = ((𝑥 𝑦) 𝑧))
2019oveq2d 7171 . . . . . . . . 9 (𝑤 = 𝑧 → (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)))
2118, 20eqeq12d 2774 . . . . . . . 8 (𝑤 = 𝑧 → (((𝑥 𝑦) (𝑥 𝑤)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑤)) ↔ ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧))))
2211, 16, 21rspc3v 3556 . . . . . . 7 (((𝑥 𝑦) ∈ 𝐵𝑥𝐵𝑧𝐵) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧))))
234, 5, 6, 22syl3anc 1368 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧))))
2423imp 410 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → ((𝑥 𝑦) (𝑥 𝑧)) = (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)))
25 simpl 486 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝐾 ∈ Lat)
26 latdisd.j . . . . . . . . . 10 = (join‘𝐾)
271, 26latjcom 17740 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥 𝑦) ∈ 𝐵𝑥𝐵) → ((𝑥 𝑦) 𝑥) = (𝑥 (𝑥 𝑦)))
2825, 4, 5, 27syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦) 𝑥) = (𝑥 (𝑥 𝑦)))
291, 26, 2latabs1 17768 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑦𝐵) → (𝑥 (𝑥 𝑦)) = 𝑥)
30293adant3r3 1181 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑥 𝑦)) = 𝑥)
3128, 30eqtrd 2793 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦) 𝑥) = 𝑥)
321, 26latjcom 17740 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥 𝑦) ∈ 𝐵𝑧𝐵) → ((𝑥 𝑦) 𝑧) = (𝑧 (𝑥 𝑦)))
3325, 4, 6, 32syl3anc 1368 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 𝑦) 𝑧) = (𝑧 (𝑥 𝑦)))
3431, 33oveq12d 7173 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)) = (𝑥 (𝑧 (𝑥 𝑦))))
3534adantr 484 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (((𝑥 𝑦) 𝑥) ((𝑥 𝑦) 𝑧)) = (𝑥 (𝑧 (𝑥 𝑦))))
36 simpr2 1192 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → 𝑦𝐵)
37 oveq1 7162 . . . . . . . . . . 11 (𝑢 = 𝑧 → (𝑢 (𝑣 𝑤)) = (𝑧 (𝑣 𝑤)))
38 oveq1 7162 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 𝑣) = (𝑧 𝑣))
39 oveq1 7162 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢 𝑤) = (𝑧 𝑤))
4038, 39oveq12d 7173 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢 𝑣) (𝑢 𝑤)) = ((𝑧 𝑣) (𝑧 𝑤)))
4137, 40eqeq12d 2774 . . . . . . . . . 10 (𝑢 = 𝑧 → ((𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) ↔ (𝑧 (𝑣 𝑤)) = ((𝑧 𝑣) (𝑧 𝑤))))
4212oveq2d 7171 . . . . . . . . . . 11 (𝑣 = 𝑥 → (𝑧 (𝑣 𝑤)) = (𝑧 (𝑥 𝑤)))
43 oveq2 7163 . . . . . . . . . . . 12 (𝑣 = 𝑥 → (𝑧 𝑣) = (𝑧 𝑥))
4443oveq1d 7170 . . . . . . . . . . 11 (𝑣 = 𝑥 → ((𝑧 𝑣) (𝑧 𝑤)) = ((𝑧 𝑥) (𝑧 𝑤)))
4542, 44eqeq12d 2774 . . . . . . . . . 10 (𝑣 = 𝑥 → ((𝑧 (𝑣 𝑤)) = ((𝑧 𝑣) (𝑧 𝑤)) ↔ (𝑧 (𝑥 𝑤)) = ((𝑧 𝑥) (𝑧 𝑤))))
46 oveq2 7163 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑥 𝑤) = (𝑥 𝑦))
4746oveq2d 7171 . . . . . . . . . . 11 (𝑤 = 𝑦 → (𝑧 (𝑥 𝑤)) = (𝑧 (𝑥 𝑦)))
48 oveq2 7163 . . . . . . . . . . . 12 (𝑤 = 𝑦 → (𝑧 𝑤) = (𝑧 𝑦))
4948oveq2d 7171 . . . . . . . . . . 11 (𝑤 = 𝑦 → ((𝑧 𝑥) (𝑧 𝑤)) = ((𝑧 𝑥) (𝑧 𝑦)))
5047, 49eqeq12d 2774 . . . . . . . . . 10 (𝑤 = 𝑦 → ((𝑧 (𝑥 𝑤)) = ((𝑧 𝑥) (𝑧 𝑤)) ↔ (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦))))
5141, 45, 50rspc3v 3556 . . . . . . . . 9 ((𝑧𝐵𝑥𝐵𝑦𝐵) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦))))
526, 5, 36, 51syl3anc 1368 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦))))
5352imp 410 . . . . . . 7 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑧 (𝑥 𝑦)) = ((𝑧 𝑥) (𝑧 𝑦)))
5453oveq2d 7171 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 (𝑧 (𝑥 𝑦))) = (𝑥 ((𝑧 𝑥) (𝑧 𝑦))))
551, 26latjcl 17732 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑥𝐵) → (𝑧 𝑥) ∈ 𝐵)
5625, 6, 5, 55syl3anc 1368 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑥) ∈ 𝐵)
571, 26latjcl 17732 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑦𝐵) → (𝑧 𝑦) ∈ 𝐵)
5825, 6, 36, 57syl3anc 1368 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑦) ∈ 𝐵)
591, 2latmass 17869 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵 ∧ (𝑧 𝑥) ∈ 𝐵 ∧ (𝑧 𝑦) ∈ 𝐵)) → ((𝑥 (𝑧 𝑥)) (𝑧 𝑦)) = (𝑥 ((𝑧 𝑥) (𝑧 𝑦))))
6025, 5, 56, 58, 59syl13anc 1369 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 (𝑧 𝑥)) (𝑧 𝑦)) = (𝑥 ((𝑧 𝑥) (𝑧 𝑦))))
611, 26latjcom 17740 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑥𝐵) → (𝑧 𝑥) = (𝑥 𝑧))
6225, 6, 5, 61syl3anc 1368 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑥) = (𝑥 𝑧))
6362oveq2d 7171 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑧 𝑥)) = (𝑥 (𝑥 𝑧)))
641, 26, 2latabs2 17769 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ 𝑥𝐵𝑧𝐵) → (𝑥 (𝑥 𝑧)) = 𝑥)
6525, 5, 6, 64syl3anc 1368 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑥 𝑧)) = 𝑥)
6663, 65eqtrd 2793 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑧 𝑥)) = 𝑥)
671, 26latjcom 17740 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑧𝐵𝑦𝐵) → (𝑧 𝑦) = (𝑦 𝑧))
6825, 6, 36, 67syl3anc 1368 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑧 𝑦) = (𝑦 𝑧))
6966, 68oveq12d 7173 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 (𝑧 𝑥)) (𝑧 𝑦)) = (𝑥 (𝑦 𝑧)))
7060, 69eqtr3d 2795 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 ((𝑧 𝑥) (𝑧 𝑦))) = (𝑥 (𝑦 𝑧)))
7170adantr 484 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 ((𝑧 𝑥) (𝑧 𝑦))) = (𝑥 (𝑦 𝑧)))
7254, 71eqtrd 2793 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 (𝑧 (𝑥 𝑦))) = (𝑥 (𝑦 𝑧)))
7324, 35, 723eqtrrd 2798 . . . 4 (((𝐾 ∈ Lat ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
7473an32s 651 . . 3 (((𝐾 ∈ Lat ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
7574ralrimivvva 3121 . 2 ((𝐾 ∈ Lat ∧ ∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤))) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧)))
7675ex 416 1 (𝐾 ∈ Lat → (∀𝑢𝐵𝑣𝐵𝑤𝐵 (𝑢 (𝑣 𝑤)) = ((𝑢 𝑣) (𝑢 𝑤)) → ∀𝑥𝐵𝑦𝐵𝑧𝐵 (𝑥 (𝑦 𝑧)) = ((𝑥 𝑦) (𝑥 𝑧))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ‘cfv 6339  (class class class)co 7155  Basecbs 16546  joincjn 17625  meetcmee 17626  Latclat 17726 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-dec 12143  df-ndx 16549  df-slot 16550  df-base 16552  df-sets 16553  df-ple 16648  df-proset 17609  df-poset 17627  df-lub 17655  df-glb 17656  df-join 17657  df-meet 17658  df-lat 17727  df-odu 17810 This theorem is referenced by:  latdisd  17871
 Copyright terms: Public domain W3C validator