Proof of Theorem latdisdlem
Step | Hyp | Ref
| Expression |
1 | | latdisd.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
2 | | latdisd.m |
. . . . . . . . 9
⊢ ∧ =
(meet‘𝐾) |
3 | 1, 2 | latmcl 17733 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∧ 𝑦) ∈ 𝐵) |
4 | 3 | 3adant3r3 1181 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∧ 𝑦) ∈ 𝐵) |
5 | | simpr1 1191 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 ∈ 𝐵) |
6 | | simpr3 1193 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
7 | | oveq1 7162 |
. . . . . . . . 9
⊢ (𝑢 = (𝑥 ∧ 𝑦) → (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑣 ∧ 𝑤))) |
8 | | oveq1 7162 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑥 ∧ 𝑦) → (𝑢 ∨ 𝑣) = ((𝑥 ∧ 𝑦) ∨ 𝑣)) |
9 | | oveq1 7162 |
. . . . . . . . . 10
⊢ (𝑢 = (𝑥 ∧ 𝑦) → (𝑢 ∨ 𝑤) = ((𝑥 ∧ 𝑦) ∨ 𝑤)) |
10 | 8, 9 | oveq12d 7173 |
. . . . . . . . 9
⊢ (𝑢 = (𝑥 ∧ 𝑦) → ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑣) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤))) |
11 | 7, 10 | eqeq12d 2774 |
. . . . . . . 8
⊢ (𝑢 = (𝑥 ∧ 𝑦) → ((𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) ↔ ((𝑥 ∧ 𝑦) ∨ (𝑣 ∧ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑣) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤)))) |
12 | | oveq1 7162 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → (𝑣 ∧ 𝑤) = (𝑥 ∧ 𝑤)) |
13 | 12 | oveq2d 7171 |
. . . . . . . . 9
⊢ (𝑣 = 𝑥 → ((𝑥 ∧ 𝑦) ∨ (𝑣 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤))) |
14 | | oveq2 7163 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → ((𝑥 ∧ 𝑦) ∨ 𝑣) = ((𝑥 ∧ 𝑦) ∨ 𝑥)) |
15 | 14 | oveq1d 7170 |
. . . . . . . . 9
⊢ (𝑣 = 𝑥 → (((𝑥 ∧ 𝑦) ∨ 𝑣) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤))) |
16 | 13, 15 | eqeq12d 2774 |
. . . . . . . 8
⊢ (𝑣 = 𝑥 → (((𝑥 ∧ 𝑦) ∨ (𝑣 ∧ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑣) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤)) ↔ ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤)))) |
17 | | oveq2 7163 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑧)) |
18 | 17 | oveq2d 7171 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
19 | | oveq2 7163 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → ((𝑥 ∧ 𝑦) ∨ 𝑤) = ((𝑥 ∧ 𝑦) ∨ 𝑧)) |
20 | 19 | oveq2d 7171 |
. . . . . . . . 9
⊢ (𝑤 = 𝑧 → (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧))) |
21 | 18, 20 | eqeq12d 2774 |
. . . . . . . 8
⊢ (𝑤 = 𝑧 → (((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑤)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑤)) ↔ ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧)))) |
22 | 11, 16, 21 | rspc3v 3556 |
. . . . . . 7
⊢ (((𝑥 ∧ 𝑦) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧)))) |
23 | 4, 5, 6, 22 | syl3anc 1368 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧)))) |
24 | 23 | imp 410 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)) = (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧))) |
25 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝐾 ∈ Lat) |
26 | | latdisd.j |
. . . . . . . . . 10
⊢ ∨ =
(join‘𝐾) |
27 | 1, 26 | latjcom 17740 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∧ 𝑦) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∧ 𝑦) ∨ 𝑥) = (𝑥 ∨ (𝑥 ∧ 𝑦))) |
28 | 25, 4, 5, 27 | syl3anc 1368 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∧ 𝑦) ∨ 𝑥) = (𝑥 ∨ (𝑥 ∧ 𝑦))) |
29 | 1, 26, 2 | latabs1 17768 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ∨ (𝑥 ∧ 𝑦)) = 𝑥) |
30 | 29 | 3adant3r3 1181 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∨ (𝑥 ∧ 𝑦)) = 𝑥) |
31 | 28, 30 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∧ 𝑦) ∨ 𝑥) = 𝑥) |
32 | 1, 26 | latjcom 17740 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∧ 𝑦) ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → ((𝑥 ∧ 𝑦) ∨ 𝑧) = (𝑧 ∨ (𝑥 ∧ 𝑦))) |
33 | 25, 4, 6, 32 | syl3anc 1368 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∧ 𝑦) ∨ 𝑧) = (𝑧 ∨ (𝑥 ∧ 𝑦))) |
34 | 31, 33 | oveq12d 7173 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧)) = (𝑥 ∧ (𝑧 ∨ (𝑥 ∧ 𝑦)))) |
35 | 34 | adantr 484 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → (((𝑥 ∧ 𝑦) ∨ 𝑥) ∧ ((𝑥 ∧ 𝑦) ∨ 𝑧)) = (𝑥 ∧ (𝑧 ∨ (𝑥 ∧ 𝑦)))) |
36 | | simpr2 1192 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑦 ∈ 𝐵) |
37 | | oveq1 7162 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → (𝑢 ∨ (𝑣 ∧ 𝑤)) = (𝑧 ∨ (𝑣 ∧ 𝑤))) |
38 | | oveq1 7162 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (𝑢 ∨ 𝑣) = (𝑧 ∨ 𝑣)) |
39 | | oveq1 7162 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (𝑢 ∨ 𝑤) = (𝑧 ∨ 𝑤)) |
40 | 38, 39 | oveq12d 7173 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) = ((𝑧 ∨ 𝑣) ∧ (𝑧 ∨ 𝑤))) |
41 | 37, 40 | eqeq12d 2774 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → ((𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) ↔ (𝑧 ∨ (𝑣 ∧ 𝑤)) = ((𝑧 ∨ 𝑣) ∧ (𝑧 ∨ 𝑤)))) |
42 | 12 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑥 → (𝑧 ∨ (𝑣 ∧ 𝑤)) = (𝑧 ∨ (𝑥 ∧ 𝑤))) |
43 | | oveq2 7163 |
. . . . . . . . . . . 12
⊢ (𝑣 = 𝑥 → (𝑧 ∨ 𝑣) = (𝑧 ∨ 𝑥)) |
44 | 43 | oveq1d 7170 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑥 → ((𝑧 ∨ 𝑣) ∧ (𝑧 ∨ 𝑤)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑤))) |
45 | 42, 44 | eqeq12d 2774 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑥 → ((𝑧 ∨ (𝑣 ∧ 𝑤)) = ((𝑧 ∨ 𝑣) ∧ (𝑧 ∨ 𝑤)) ↔ (𝑧 ∨ (𝑥 ∧ 𝑤)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑤)))) |
46 | | oveq2 7163 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑥 ∧ 𝑤) = (𝑥 ∧ 𝑦)) |
47 | 46 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → (𝑧 ∨ (𝑥 ∧ 𝑤)) = (𝑧 ∨ (𝑥 ∧ 𝑦))) |
48 | | oveq2 7163 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑦 → (𝑧 ∨ 𝑤) = (𝑧 ∨ 𝑦)) |
49 | 48 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑦 → ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑤)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦))) |
50 | 47, 49 | eqeq12d 2774 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ((𝑧 ∨ (𝑥 ∧ 𝑤)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑤)) ↔ (𝑧 ∨ (𝑥 ∧ 𝑦)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦)))) |
51 | 41, 45, 50 | rspc3v 3556 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → (𝑧 ∨ (𝑥 ∧ 𝑦)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦)))) |
52 | 6, 5, 36, 51 | syl3anc 1368 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → (𝑧 ∨ (𝑥 ∧ 𝑦)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦)))) |
53 | 52 | imp 410 |
. . . . . . 7
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → (𝑧 ∨ (𝑥 ∧ 𝑦)) = ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦))) |
54 | 53 | oveq2d 7171 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → (𝑥 ∧ (𝑧 ∨ (𝑥 ∧ 𝑦))) = (𝑥 ∧ ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦)))) |
55 | 1, 26 | latjcl 17732 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∨ 𝑥) ∈ 𝐵) |
56 | 25, 6, 5, 55 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∨ 𝑥) ∈ 𝐵) |
57 | 1, 26 | latjcl 17732 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∨ 𝑦) ∈ 𝐵) |
58 | 25, 6, 36, 57 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∨ 𝑦) ∈ 𝐵) |
59 | 1, 2 | latmass 17869 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ (𝑧 ∨ 𝑥) ∈ 𝐵 ∧ (𝑧 ∨ 𝑦) ∈ 𝐵)) → ((𝑥 ∧ (𝑧 ∨ 𝑥)) ∧ (𝑧 ∨ 𝑦)) = (𝑥 ∧ ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦)))) |
60 | 25, 5, 56, 58, 59 | syl13anc 1369 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∧ (𝑧 ∨ 𝑥)) ∧ (𝑧 ∨ 𝑦)) = (𝑥 ∧ ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦)))) |
61 | 1, 26 | latjcom 17740 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∨ 𝑥) = (𝑥 ∨ 𝑧)) |
62 | 25, 6, 5, 61 | syl3anc 1368 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∨ 𝑥) = (𝑥 ∨ 𝑧)) |
63 | 62 | oveq2d 7171 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∧ (𝑧 ∨ 𝑥)) = (𝑥 ∧ (𝑥 ∨ 𝑧))) |
64 | 1, 26, 2 | latabs2 17769 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ Lat ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑥 ∧ (𝑥 ∨ 𝑧)) = 𝑥) |
65 | 25, 5, 6, 64 | syl3anc 1368 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∧ (𝑥 ∨ 𝑧)) = 𝑥) |
66 | 63, 65 | eqtrd 2793 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∧ (𝑧 ∨ 𝑥)) = 𝑥) |
67 | 1, 26 | latjcom 17740 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑧 ∨ 𝑦) = (𝑦 ∨ 𝑧)) |
68 | 25, 6, 36, 67 | syl3anc 1368 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑧 ∨ 𝑦) = (𝑦 ∨ 𝑧)) |
69 | 66, 68 | oveq12d 7173 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∧ (𝑧 ∨ 𝑥)) ∧ (𝑧 ∨ 𝑦)) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
70 | 60, 69 | eqtr3d 2795 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∧ ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦))) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
71 | 70 | adantr 484 |
. . . . . 6
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → (𝑥 ∧ ((𝑧 ∨ 𝑥) ∧ (𝑧 ∨ 𝑦))) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
72 | 54, 71 | eqtrd 2793 |
. . . . 5
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → (𝑥 ∧ (𝑧 ∨ (𝑥 ∧ 𝑦))) = (𝑥 ∧ (𝑦 ∨ 𝑧))) |
73 | 24, 35, 72 | 3eqtrrd 2798 |
. . . 4
⊢ (((𝐾 ∈ Lat ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
74 | 73 | an32s 651 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
75 | 74 | ralrimivvva 3121 |
. 2
⊢ ((𝐾 ∈ Lat ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤))) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧))) |
76 | 75 | ex 416 |
1
⊢ (𝐾 ∈ Lat →
(∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑢 ∨ (𝑣 ∧ 𝑤)) = ((𝑢 ∨ 𝑣) ∧ (𝑢 ∨ 𝑤)) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥 ∧ (𝑦 ∨ 𝑧)) = ((𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)))) |