Proof of Theorem latnlej2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | latlej.b | . . . . . . 7
⊢ 𝐵 = (Base‘𝐾) | 
| 2 |  | latlej.l | . . . . . . 7
⊢  ≤ =
(le‘𝐾) | 
| 3 |  | latlej.j | . . . . . . 7
⊢  ∨ =
(join‘𝐾) | 
| 4 | 1, 2, 3 | latlej1 18494 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑌 ≤ (𝑌 ∨ 𝑍)) | 
| 5 | 4 | 3adant3r1 1182 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ≤ (𝑌 ∨ 𝑍)) | 
| 6 |  | simpl 482 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | 
| 7 |  | simpr1 1194 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | 
| 8 |  | simpr2 1195 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | 
| 9 | 1, 3 | latjcl 18485 | . . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 ∨ 𝑍) ∈ 𝐵) | 
| 10 | 9 | 3adant3r1 1182 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 ∨ 𝑍) ∈ 𝐵) | 
| 11 | 1, 2 | lattr 18490 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 ∨ 𝑍) ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≤ (𝑌 ∨ 𝑍))) | 
| 12 | 6, 7, 8, 10, 11 | syl13anc 1373 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≤ (𝑌 ∨ 𝑍))) | 
| 13 | 5, 12 | mpan2d 694 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → 𝑋 ≤ (𝑌 ∨ 𝑍))) | 
| 14 | 13 | con3d 152 | . . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → ¬ 𝑋 ≤ 𝑌)) | 
| 15 | 1, 2, 3 | latlej2 18495 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → 𝑍 ≤ (𝑌 ∨ 𝑍)) | 
| 16 | 15 | 3adant3r1 1182 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ≤ (𝑌 ∨ 𝑍)) | 
| 17 |  | simpr3 1196 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | 
| 18 | 1, 2 | lattr 18490 | . . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ (𝑌 ∨ 𝑍) ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≤ (𝑌 ∨ 𝑍))) | 
| 19 | 6, 7, 17, 10, 18 | syl13anc 1373 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑍 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≤ (𝑌 ∨ 𝑍))) | 
| 20 | 16, 19 | mpan2d 694 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑍 → 𝑋 ≤ (𝑌 ∨ 𝑍))) | 
| 21 | 20 | con3d 152 | . . 3
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → ¬ 𝑋 ≤ 𝑍)) | 
| 22 | 14, 21 | jcad 512 | . 2
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (¬ 𝑋 ≤ (𝑌 ∨ 𝑍) → (¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍))) | 
| 23 | 22 | 3impia 1117 | 1
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍)) |