MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemin Structured version   Visualization version   GIF version

Theorem lemin 12968
Description: Two ways of saying a number is less than or equal to the minimum of two others. (Contributed by NM, 3-Aug-2007.)
Assertion
Ref Expression
lemin ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem lemin
StepHypRef Expression
1 rexr 11063 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11063 . 2 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 rexr 11063 . 2 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
4 xrlemin 12960 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴𝐵𝐴𝐶)))
51, 2, 3, 4syl3an 1160 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ≤ if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087  wcel 2104  ifcif 4465   class class class wbr 5081  cr 10912  *cxr 11050  cle 11052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7616  ax-cnex 10969  ax-resscn 10970  ax-pre-lttri 10987  ax-pre-lttrn 10988
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5496  df-po 5510  df-so 5511  df-xp 5602  df-rel 5603  df-cnv 5604  df-co 5605  df-dm 5606  df-rn 5607  df-res 5608  df-ima 5609  df-iota 6406  df-fun 6456  df-fn 6457  df-f 6458  df-f1 6459  df-fo 6460  df-f1o 6461  df-fv 6462  df-er 8525  df-en 8761  df-dom 8762  df-sdom 8763  df-pnf 11053  df-mnf 11054  df-xr 11055  df-ltxr 11056  df-le 11057
This theorem is referenced by:  pc2dvds  16621  minveclem3b  24633  mbfi1fseqlem4  24924  chebbnd1lem1  26658  hoidmv1lelem2  44179
  Copyright terms: Public domain W3C validator