MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Structured version   Visualization version   GIF version

Theorem chebbnd1lem1 27527
Description: Lemma for chebbnd1 27530: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 27351. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 27342, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 27338 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
Assertion
Ref Expression
chebbnd1lem1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))

Proof of Theorem chebbnd1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn 12346 . . . . . 6 4 ∈ ℕ
2 eluznn 12957 . . . . . . . 8 ((4 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘4)) → 𝑁 ∈ ℕ)
31, 2mpan 690 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ)
43nnnn0d 12584 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ0)
5 nnexpcl 14111 . . . . . 6 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
61, 4, 5sylancr 587 . . . . 5 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℕ)
76nnrpd 13072 . . . 4 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℝ+)
83nnrpd 13072 . . . 4 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ+)
97, 8rpdivcld 13091 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) ∈ ℝ+)
109relogcld 26679 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) ∈ ℝ)
11 fzctr 13676 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
124, 11syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 14358 . . . . 5 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnrpd 13072 . . 3 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ+)
1615relogcld 26679 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ∈ ℝ)
17 2z 12646 . . . . . . 7 2 ∈ ℤ
18 eluzelz 12885 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℤ)
19 zmulcl 12663 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2017, 18, 19sylancr 587 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℤ)
2120zred 12719 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ)
22 ppicl 27188 . . . . 5 ((2 · 𝑁) ∈ ℝ → (π‘(2 · 𝑁)) ∈ ℕ0)
2321, 22syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℕ0)
2423nn0red 12585 . . 3 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℝ)
25 2nn 12336 . . . . . 6 2 ∈ ℕ
26 nnmulcl 12287 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2725, 3, 26sylancr 587 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℕ)
2827nnrpd 13072 . . . 4 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ+)
2928relogcld 26679 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ)
3024, 29remulcld 11288 . 2 (𝑁 ∈ (ℤ‘4) → ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))) ∈ ℝ)
31 bclbnd 27338 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
32 logltb 26656 . . . 4 ((((4↑𝑁) / 𝑁) ∈ ℝ+ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ+) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
339, 15, 32syl2anc 584 . . 3 (𝑁 ∈ (ℤ‘4) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
3431, 33mpbid 232 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))
35 chebbnd1lem1.1 . . . . . . . 8 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
3627, 14ifcld 4576 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ∈ ℕ)
3735, 36eqeltrid 2842 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℕ)
3837nnred 12278 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℝ)
39 ppicl 27188 . . . . . 6 (𝐾 ∈ ℝ → (π𝐾) ∈ ℕ0)
4038, 39syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℕ0)
4140nn0red 12585 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℝ)
4241, 29remulcld 11288 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ∈ ℝ)
43 fzfid 14010 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ∈ Fin)
44 inss1 4244 . . . . . 6 ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)
45 ssfi 9211 . . . . . 6 (((1...𝐾) ∈ Fin ∧ ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 586 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4737nnzd 12637 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℤ)
4814nnzd 12637 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℤ)
4914nnred 12278 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ)
50 min2 13228 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5121, 49, 50syl2anc 584 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5235, 51eqbrtrid 5182 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ ((2 · 𝑁)C𝑁))
53 eluz2 12881 . . . . . . . . . 10 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ 𝐾 ≤ ((2 · 𝑁)C𝑁)))
5447, 48, 52, 53syl3anbrc 1342 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ (ℤ𝐾))
55 fzss2 13600 . . . . . . . . 9 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5654, 55syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5756ssrind 4251 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5857sselda 3994 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
59 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
6059elin1d 4213 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
61 elfznn 13589 . . . . . . . . . 10 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ∈ ℕ)
6260, 61syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℕ)
6359elin2d 4214 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℙ)
6414adantr 480 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
6563, 64pccld 16883 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6662, 65nnexpcld 14280 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
6766nnrpd 13072 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
6867relogcld 26679 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
6958, 68syldan 591 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7029adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(2 · 𝑁)) ∈ ℝ)
71 elinel2 4211 . . . . . . . 8 (𝑘 ∈ ((1...𝐾) ∩ ℙ) → 𝑘 ∈ ℙ)
72 bposlem1 27342 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℙ) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
733, 71, 72syl2an 596 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
7458, 67syldan 591 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7574reeflogd 26680 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) = (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
7628adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (2 · 𝑁) ∈ ℝ+)
7776reeflogd 26680 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
7873, 75, 773brtr4d 5179 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁))))
79 efle 16150 . . . . . . 7 (((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ ∧ (log‘(2 · 𝑁)) ∈ ℝ) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8069, 70, 79syl2anc 584 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8178, 80mpbird 257 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)))
8246, 69, 70, 81fsumle 15831 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)))
8368recnd 11286 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
8458, 83syldan 591 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
85 eldifn 4141 . . . . . . . . . . . . 13 (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
8685adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
87 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)))
8887eldifad 3974 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
8988elin1d 4213 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
9089, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℕ)
9190adantrr 717 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℕ)
9291nnred 12278 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℝ)
9388, 66syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
9493nnred 12278 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9594adantrr 717 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9621adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (2 · 𝑁) ∈ ℝ)
9791nncnd 12279 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℂ)
9897exp1d 14177 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) = 𝑘)
9991nnge1d 12311 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 1 ≤ 𝑘)
100 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
101 nnuz 12918 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
102100, 101eleqtrdi 2848 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ (ℤ‘1))
10392, 99, 102leexp2ad 14289 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
10498, 103eqbrtrrd 5171 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
1053adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑁 ∈ ℕ)
10688elin2d 4214 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℙ)
107106adantrr 717 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℙ)
108105, 107, 72syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
10992, 95, 96, 104, 108letrd 11415 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (2 · 𝑁))
110 elfzle2 13564 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11189, 110syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
112111adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11349adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → ((2 · 𝑁)C𝑁) ∈ ℝ)
114 lemin 13230 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
11592, 96, 113, 114syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
116109, 112, 115mpbir2and 713 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)))
117116, 35breqtrrdi 5189 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘𝐾)
11837adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℕ)
119118nnzd 12637 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℤ)
120 fznn 13628 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
121119, 120syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
12291, 117, 121mpbir2and 713 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ (1...𝐾))
123122, 107elind 4209 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ((1...𝐾) ∩ ℙ))
124123expr 456 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → 𝑘 ∈ ((1...𝐾) ∩ ℙ)))
12586, 124mtod 198 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
12688, 65syldan 591 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
127 elnn0 12525 . . . . . . . . . . . . 13 ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0 ↔ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
128126, 127sylib 218 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
129128ord 864 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
130125, 129mpd 15 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)
131130oveq2d 7446 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = (𝑘↑0))
13290nncnd 12279 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℂ)
133132exp0d 14176 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑0) = 1)
134131, 133eqtrd 2774 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = 1)
135134fveq2d 6910 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘1))
136 log1 26641 . . . . . . 7 (log‘1) = 0
137135, 136eqtrdi 2790 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = 0)
138 fzfid 14010 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → (1...((2 · 𝑁)C𝑁)) ∈ Fin)
139 inss1 4244 . . . . . . 7 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))
140 ssfi 9211 . . . . . . 7 (((1...((2 · 𝑁)C𝑁)) ∈ Fin ∧ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
141138, 139, 140sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ‘4) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
14257, 84, 137, 141fsumss 15757 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))))
14362nnrpd 13072 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℝ+)
14465nn0zd 12636 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
145 relogexp 26652 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
146143, 144, 145syl2anc 584 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
147146sumeq2dv 15734 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
148 pclogsum 27273 . . . . . 6 (((2 · 𝑁)C𝑁) ∈ ℕ → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
14914, 148syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
150142, 147, 1493eqtrd 2778 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘((2 · 𝑁)C𝑁)))
15129recnd 11286 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℂ)
152 fsumconst 15822 . . . . . 6 ((((1...𝐾) ∩ ℙ) ∈ Fin ∧ (log‘(2 · 𝑁)) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
15346, 151, 152syl2anc 584 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
154 2eluzge1 12933 . . . . . . 7 2 ∈ (ℤ‘1)
155 ppival2g 27186 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 2 ∈ (ℤ‘1)) → (π𝐾) = (♯‘((1...𝐾) ∩ ℙ)))
15647, 154, 155sylancl 586 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (π𝐾) = (♯‘((1...𝐾) ∩ ℙ)))
157156oveq1d 7445 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
158153, 157eqtr4d 2777 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((π𝐾) · (log‘(2 · 𝑁))))
15982, 150, 1583brtr3d 5178 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π𝐾) · (log‘(2 · 𝑁))))
160 min1 13227 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16121, 49, 160syl2anc 584 . . . . . 6 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16235, 161eqbrtrid 5182 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ (2 · 𝑁))
163 ppiwordi 27219 . . . . 5 ((𝐾 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ 𝐾 ≤ (2 · 𝑁)) → (π𝐾) ≤ (π‘(2 · 𝑁)))
16438, 21, 162, 163syl3anc 1370 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ≤ (π‘(2 · 𝑁)))
165 1red 11259 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 ∈ ℝ)
166 2re 12337 . . . . . . . 8 2 ∈ ℝ
167166a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ∈ ℝ)
168 1lt2 12434 . . . . . . . 8 1 < 2
169168a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 < 2)
170 2t1e2 12426 . . . . . . . 8 (2 · 1) = 2
1713nnge1d 12311 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → 1 ≤ 𝑁)
172 eluzelre 12886 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ)
173 2pos 12366 . . . . . . . . . . . 12 0 < 2
174166, 173pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
175174a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → (2 ∈ ℝ ∧ 0 < 2))
176 lemul2 12117 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
177165, 172, 175, 176syl3anc 1370 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
178171, 177mpbid 232 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (2 · 1) ≤ (2 · 𝑁))
179170, 178eqbrtrrid 5183 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ≤ (2 · 𝑁))
180165, 167, 21, 169, 179ltletrd 11418 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 1 < (2 · 𝑁))
18121, 180rplogcld 26685 . . . . 5 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ+)
18241, 24, 181lemul1d 13117 . . . 4 (𝑁 ∈ (ℤ‘4) → ((π𝐾) ≤ (π‘(2 · 𝑁)) ↔ ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))))
183164, 182mpbid 232 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18416, 42, 30, 159, 183letrd 11415 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18510, 16, 30, 34, 184ltletrd 11418 1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wcel 2105  cdif 3959  cin 3961  wss 3962  ifcif 4530   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   · cmul 11157   < clt 11292  cle 11293   / cdiv 11917  cn 12263  2c2 12318  4c4 12320  0cn0 12523  cz 12610  cuz 12875  +crp 13031  ...cfz 13543  cexp 14098  Ccbc 14337  chash 14365  Σcsu 15718  expce 16093  cprime 16704   pCnt cpc 16869  logclog 26610  πcppi 27151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-prm 16705  df-pc 16870  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-ppi 27157
This theorem is referenced by:  chebbnd1lem3  27529
  Copyright terms: Public domain W3C validator