Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Structured version   Visualization version   GIF version

Theorem chebbnd1lem1 26059
 Description: Lemma for chebbnd1 26062: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 25883. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 25874, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 25870 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
Assertion
Ref Expression
chebbnd1lem1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))

Proof of Theorem chebbnd1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn 11720 . . . . . 6 4 ∈ ℕ
2 eluznn 12318 . . . . . . . 8 ((4 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘4)) → 𝑁 ∈ ℕ)
31, 2mpan 689 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ)
43nnnn0d 11955 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ0)
5 nnexpcl 13450 . . . . . 6 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
61, 4, 5sylancr 590 . . . . 5 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℕ)
76nnrpd 12429 . . . 4 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℝ+)
83nnrpd 12429 . . . 4 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ+)
97, 8rpdivcld 12448 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) ∈ ℝ+)
109relogcld 25220 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) ∈ ℝ)
11 fzctr 13026 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
124, 11syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 13691 . . . . 5 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnrpd 12429 . . 3 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ+)
1615relogcld 25220 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ∈ ℝ)
17 2z 12014 . . . . . . 7 2 ∈ ℤ
18 eluzelz 12253 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℤ)
19 zmulcl 12031 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2017, 18, 19sylancr 590 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℤ)
2120zred 12087 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ)
22 ppicl 25722 . . . . 5 ((2 · 𝑁) ∈ ℝ → (π‘(2 · 𝑁)) ∈ ℕ0)
2321, 22syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℕ0)
2423nn0red 11956 . . 3 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℝ)
25 2nn 11710 . . . . . 6 2 ∈ ℕ
26 nnmulcl 11661 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2725, 3, 26sylancr 590 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℕ)
2827nnrpd 12429 . . . 4 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ+)
2928relogcld 25220 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ)
3024, 29remulcld 10670 . 2 (𝑁 ∈ (ℤ‘4) → ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))) ∈ ℝ)
31 bclbnd 25870 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
32 logltb 25197 . . . 4 ((((4↑𝑁) / 𝑁) ∈ ℝ+ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ+) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
339, 15, 32syl2anc 587 . . 3 (𝑁 ∈ (ℤ‘4) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
3431, 33mpbid 235 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))
35 chebbnd1lem1.1 . . . . . . . 8 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
3627, 14ifcld 4496 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ∈ ℕ)
3735, 36eqeltrid 2920 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℕ)
3837nnred 11652 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℝ)
39 ppicl 25722 . . . . . 6 (𝐾 ∈ ℝ → (π𝐾) ∈ ℕ0)
4038, 39syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℕ0)
4140nn0red 11956 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℝ)
4241, 29remulcld 10670 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ∈ ℝ)
43 fzfid 13348 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ∈ Fin)
44 inss1 4191 . . . . . 6 ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)
45 ssfi 8736 . . . . . 6 (((1...𝐾) ∈ Fin ∧ ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 589 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4737nnzd 12086 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℤ)
4814nnzd 12086 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℤ)
4914nnred 11652 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ)
50 min2 12583 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5121, 49, 50syl2anc 587 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5235, 51eqbrtrid 5088 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ ((2 · 𝑁)C𝑁))
53 eluz2 12249 . . . . . . . . . 10 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ 𝐾 ≤ ((2 · 𝑁)C𝑁)))
5447, 48, 52, 53syl3anbrc 1340 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ (ℤ𝐾))
55 fzss2 12954 . . . . . . . . 9 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5654, 55syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5756ssrind 4198 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5857sselda 3954 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
59 simpr 488 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
6059elin1d 4161 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
61 elfznn 12943 . . . . . . . . . 10 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ∈ ℕ)
6260, 61syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℕ)
6359elin2d 4162 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℙ)
6414adantr 484 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
6563, 64pccld 16188 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6662, 65nnexpcld 13614 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
6766nnrpd 12429 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
6867relogcld 25220 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
6958, 68syldan 594 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7029adantr 484 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(2 · 𝑁)) ∈ ℝ)
71 elinel2 4159 . . . . . . . 8 (𝑘 ∈ ((1...𝐾) ∩ ℙ) → 𝑘 ∈ ℙ)
72 bposlem1 25874 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℙ) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
733, 71, 72syl2an 598 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
7458, 67syldan 594 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7574reeflogd 25221 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) = (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
7628adantr 484 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (2 · 𝑁) ∈ ℝ+)
7776reeflogd 25221 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
7873, 75, 773brtr4d 5085 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁))))
79 efle 15474 . . . . . . 7 (((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ ∧ (log‘(2 · 𝑁)) ∈ ℝ) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8069, 70, 79syl2anc 587 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8178, 80mpbird 260 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)))
8246, 69, 70, 81fsumle 15157 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)))
8368recnd 10668 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
8458, 83syldan 594 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
85 eldifn 4091 . . . . . . . . . . . . 13 (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
8685adantl 485 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
87 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)))
8887eldifad 3932 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
8988elin1d 4161 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
9089, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℕ)
9190adantrr 716 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℕ)
9291nnred 11652 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℝ)
9388, 66syldan 594 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
9493nnred 11652 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9594adantrr 716 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9621adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (2 · 𝑁) ∈ ℝ)
9791nncnd 11653 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℂ)
9897exp1d 13513 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) = 𝑘)
9991nnge1d 11685 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 1 ≤ 𝑘)
100 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
101 nnuz 12281 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
102100, 101eleqtrdi 2926 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ (ℤ‘1))
10392, 99, 102leexp2ad 13625 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
10498, 103eqbrtrrd 5077 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
1053adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑁 ∈ ℕ)
10688elin2d 4162 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℙ)
107106adantrr 716 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℙ)
108105, 107, 72syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
10992, 95, 96, 104, 108letrd 10796 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (2 · 𝑁))
110 elfzle2 12918 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11189, 110syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
112111adantrr 716 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11349adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → ((2 · 𝑁)C𝑁) ∈ ℝ)
114 lemin 12585 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
11592, 96, 113, 114syl3anc 1368 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
116109, 112, 115mpbir2and 712 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)))
117116, 35breqtrrdi 5095 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘𝐾)
11837adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℕ)
119118nnzd 12086 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℤ)
120 fznn 12982 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
121119, 120syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
12291, 117, 121mpbir2and 712 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ (1...𝐾))
123122, 107elind 4157 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ((1...𝐾) ∩ ℙ))
124123expr 460 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → 𝑘 ∈ ((1...𝐾) ∩ ℙ)))
12586, 124mtod 201 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
12688, 65syldan 594 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
127 elnn0 11899 . . . . . . . . . . . . 13 ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0 ↔ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
128126, 127sylib 221 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
129128ord 861 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
130125, 129mpd 15 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)
131130oveq2d 7166 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = (𝑘↑0))
13290nncnd 11653 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℂ)
133132exp0d 13512 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑0) = 1)
134131, 133eqtrd 2859 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = 1)
135134fveq2d 6666 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘1))
136 log1 25183 . . . . . . 7 (log‘1) = 0
137135, 136syl6eq 2875 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = 0)
138 fzfid 13348 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → (1...((2 · 𝑁)C𝑁)) ∈ Fin)
139 inss1 4191 . . . . . . 7 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))
140 ssfi 8736 . . . . . . 7 (((1...((2 · 𝑁)C𝑁)) ∈ Fin ∧ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
141138, 139, 140sylancl 589 . . . . . 6 (𝑁 ∈ (ℤ‘4) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
14257, 84, 137, 141fsumss 15085 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))))
14362nnrpd 12429 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℝ+)
14465nn0zd 12085 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
145 relogexp 25193 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
146143, 144, 145syl2anc 587 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
147146sumeq2dv 15063 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
148 pclogsum 25805 . . . . . 6 (((2 · 𝑁)C𝑁) ∈ ℕ → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
14914, 148syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
150142, 147, 1493eqtrd 2863 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘((2 · 𝑁)C𝑁)))
15129recnd 10668 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℂ)
152 fsumconst 15148 . . . . . 6 ((((1...𝐾) ∩ ℙ) ∈ Fin ∧ (log‘(2 · 𝑁)) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
15346, 151, 152syl2anc 587 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
154 2eluzge1 12294 . . . . . . 7 2 ∈ (ℤ‘1)
155 ppival2g 25720 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 2 ∈ (ℤ‘1)) → (π𝐾) = (♯‘((1...𝐾) ∩ ℙ)))
15647, 154, 155sylancl 589 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (π𝐾) = (♯‘((1...𝐾) ∩ ℙ)))
157156oveq1d 7165 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
158153, 157eqtr4d 2862 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((π𝐾) · (log‘(2 · 𝑁))))
15982, 150, 1583brtr3d 5084 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π𝐾) · (log‘(2 · 𝑁))))
160 min1 12582 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16121, 49, 160syl2anc 587 . . . . . 6 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16235, 161eqbrtrid 5088 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ (2 · 𝑁))
163 ppiwordi 25753 . . . . 5 ((𝐾 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ 𝐾 ≤ (2 · 𝑁)) → (π𝐾) ≤ (π‘(2 · 𝑁)))
16438, 21, 162, 163syl3anc 1368 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ≤ (π‘(2 · 𝑁)))
165 1red 10641 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 ∈ ℝ)
166 2re 11711 . . . . . . . 8 2 ∈ ℝ
167166a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ∈ ℝ)
168 1lt2 11808 . . . . . . . 8 1 < 2
169168a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 < 2)
170 2t1e2 11800 . . . . . . . 8 (2 · 1) = 2
1713nnge1d 11685 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → 1 ≤ 𝑁)
172 eluzelre 12254 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ)
173 2pos 11740 . . . . . . . . . . . 12 0 < 2
174166, 173pm3.2i 474 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
175174a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → (2 ∈ ℝ ∧ 0 < 2))
176 lemul2 11492 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
177165, 172, 175, 176syl3anc 1368 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
178171, 177mpbid 235 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (2 · 1) ≤ (2 · 𝑁))
179170, 178eqbrtrrid 5089 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ≤ (2 · 𝑁))
180165, 167, 21, 169, 179ltletrd 10799 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 1 < (2 · 𝑁))
18121, 180rplogcld 25226 . . . . 5 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ+)
18241, 24, 181lemul1d 12474 . . . 4 (𝑁 ∈ (ℤ‘4) → ((π𝐾) ≤ (π‘(2 · 𝑁)) ↔ ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))))
183164, 182mpbid 235 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18416, 42, 30, 159, 183letrd 10796 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18510, 16, 30, 34, 184ltletrd 10799 1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ∖ cdif 3917   ∩ cin 3919   ⊆ wss 3920  ifcif 4451   class class class wbr 5053  ‘cfv 6344  (class class class)co 7150  Fincfn 8506  ℂcc 10534  ℝcr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674   ≤ cle 10675   / cdiv 11296  ℕcn 11637  2c2 11692  4c4 11694  ℕ0cn0 11897  ℤcz 11981  ℤ≥cuz 12243  ℝ+crp 12389  ...cfz 12897  ↑cexp 13437  Ccbc 13670  ♯chash 13698  Σcsu 15045  expce 15418  ℙcprime 16016   pCnt cpc 16174  logclog 25152  πcppi 25685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-inf2 9102  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-om 7576  df-1st 7685  df-2nd 7686  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-er 8286  df-map 8405  df-pm 8406  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8832  df-fi 8873  df-sup 8904  df-inf 8905  df-oi 8972  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-xnn0 11968  df-z 11982  df-dec 12099  df-uz 12244  df-q 12349  df-rp 12390  df-xneg 12507  df-xadd 12508  df-xmul 12509  df-ioo 12742  df-ioc 12743  df-ico 12744  df-icc 12745  df-fz 12898  df-fzo 13041  df-fl 13169  df-mod 13245  df-seq 13377  df-exp 13438  df-fac 13642  df-bc 13671  df-hash 13699  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-sin 15426  df-cos 15427  df-pi 15429  df-dvds 15611  df-gcd 15845  df-prm 16017  df-pc 16175  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24475  df-dv 24476  df-log 25154  df-ppi 25691 This theorem is referenced by:  chebbnd1lem3  26061
 Copyright terms: Public domain W3C validator