MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem1 Structured version   Visualization version   GIF version

Theorem chebbnd1lem1 26047
Description: Lemma for chebbnd1 26050: show a lower bound on π(𝑥) at even integers using similar techniques to those used to prove bpos 25871. (Note that the expression 𝐾 is actually equal to 2 · 𝑁, but proving that is not necessary for the proof, and it's too much work.) The key to the proof is bposlem1 25862, which shows that each term in the expansion ((2 · 𝑁)C𝑁) = ∏𝑝 ∈ ℙ (𝑝↑(𝑝 pCnt ((2 · 𝑁)C𝑁))) is at most 2 · 𝑁, so that the sum really only has nonzero elements up to 2 · 𝑁, and since each term is at most 2 · 𝑁, after taking logs we get the inequality π(2 · 𝑁) · log(2 · 𝑁) ≤ log((2 · 𝑁)C𝑁), and bclbnd 25858 finishes the proof. (Contributed by Mario Carneiro, 22-Sep-2014.) (Revised by Mario Carneiro, 15-Apr-2016.)
Hypothesis
Ref Expression
chebbnd1lem1.1 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
Assertion
Ref Expression
chebbnd1lem1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))

Proof of Theorem chebbnd1lem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn 11723 . . . . . 6 4 ∈ ℕ
2 eluznn 12321 . . . . . . . 8 ((4 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘4)) → 𝑁 ∈ ℕ)
31, 2mpan 688 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ)
43nnnn0d 11958 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℕ0)
5 nnexpcl 13445 . . . . . 6 ((4 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (4↑𝑁) ∈ ℕ)
61, 4, 5sylancr 589 . . . . 5 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℕ)
76nnrpd 12432 . . . 4 (𝑁 ∈ (ℤ‘4) → (4↑𝑁) ∈ ℝ+)
83nnrpd 12432 . . . 4 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ+)
97, 8rpdivcld 12451 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) ∈ ℝ+)
109relogcld 25208 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) ∈ ℝ)
11 fzctr 13022 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
124, 11syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ (0...(2 · 𝑁)))
13 bccl2 13686 . . . . 5 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1412, 13syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℕ)
1514nnrpd 12432 . . 3 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ+)
1615relogcld 25208 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ∈ ℝ)
17 2z 12017 . . . . . . 7 2 ∈ ℤ
18 eluzelz 12256 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℤ)
19 zmulcl 12034 . . . . . . 7 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
2017, 18, 19sylancr 589 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℤ)
2120zred 12090 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ)
22 ppicl 25710 . . . . 5 ((2 · 𝑁) ∈ ℝ → (π‘(2 · 𝑁)) ∈ ℕ0)
2321, 22syl 17 . . . 4 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℕ0)
2423nn0red 11959 . . 3 (𝑁 ∈ (ℤ‘4) → (π‘(2 · 𝑁)) ∈ ℝ)
25 2nn 11713 . . . . . 6 2 ∈ ℕ
26 nnmulcl 11664 . . . . . 6 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
2725, 3, 26sylancr 589 . . . . 5 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℕ)
2827nnrpd 12432 . . . 4 (𝑁 ∈ (ℤ‘4) → (2 · 𝑁) ∈ ℝ+)
2928relogcld 25208 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ)
3024, 29remulcld 10673 . 2 (𝑁 ∈ (ℤ‘4) → ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))) ∈ ℝ)
31 bclbnd 25858 . . 3 (𝑁 ∈ (ℤ‘4) → ((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁))
32 logltb 25185 . . . 4 ((((4↑𝑁) / 𝑁) ∈ ℝ+ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ+) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
339, 15, 32syl2anc 586 . . 3 (𝑁 ∈ (ℤ‘4) → (((4↑𝑁) / 𝑁) < ((2 · 𝑁)C𝑁) ↔ (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁))))
3431, 33mpbid 234 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < (log‘((2 · 𝑁)C𝑁)))
35 chebbnd1lem1.1 . . . . . . . 8 𝐾 = if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁))
3627, 14ifcld 4514 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ∈ ℕ)
3735, 36eqeltrid 2919 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℕ)
3837nnred 11655 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℝ)
39 ppicl 25710 . . . . . 6 (𝐾 ∈ ℝ → (π𝐾) ∈ ℕ0)
4038, 39syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℕ0)
4140nn0red 11959 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ∈ ℝ)
4241, 29remulcld 10673 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ∈ ℝ)
43 fzfid 13344 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ∈ Fin)
44 inss1 4207 . . . . . 6 ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)
45 ssfi 8740 . . . . . 6 (((1...𝐾) ∈ Fin ∧ ((1...𝐾) ∩ ℙ) ⊆ (1...𝐾)) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4643, 44, 45sylancl 588 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ∈ Fin)
4737nnzd 12089 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ∈ ℤ)
4814nnzd 12089 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℤ)
4914nnred 11655 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ ℝ)
50 min2 12586 . . . . . . . . . . . 12 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5121, 49, 50syl2anc 586 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ ((2 · 𝑁)C𝑁))
5235, 51eqbrtrid 5103 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ ((2 · 𝑁)C𝑁))
53 eluz2 12252 . . . . . . . . . 10 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) ↔ (𝐾 ∈ ℤ ∧ ((2 · 𝑁)C𝑁) ∈ ℤ ∧ 𝐾 ≤ ((2 · 𝑁)C𝑁)))
5447, 48, 52, 53syl3anbrc 1339 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → ((2 · 𝑁)C𝑁) ∈ (ℤ𝐾))
55 fzss2 12950 . . . . . . . . 9 (((2 · 𝑁)C𝑁) ∈ (ℤ𝐾) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5654, 55syl 17 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (1...𝐾) ⊆ (1...((2 · 𝑁)C𝑁)))
5756ssrind 4214 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → ((1...𝐾) ∩ ℙ) ⊆ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
5857sselda 3969 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
59 simpr 487 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
6059elin1d 4177 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
61 elfznn 12939 . . . . . . . . . 10 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ∈ ℕ)
6260, 61syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℕ)
6359elin2d 4178 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℙ)
6414adantr 483 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
6563, 64pccld 16189 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
6662, 65nnexpcld 13609 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
6766nnrpd 12432 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
6867relogcld 25208 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
6958, 68syldan 593 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ)
7029adantr 483 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(2 · 𝑁)) ∈ ℝ)
71 elinel2 4175 . . . . . . . 8 (𝑘 ∈ ((1...𝐾) ∩ ℙ) → 𝑘 ∈ ℙ)
72 bposlem1 25862 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ ℙ) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
733, 71, 72syl2an 597 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
7458, 67syldan 593 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ+)
7574reeflogd 25209 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) = (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
7628adantr 483 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (2 · 𝑁) ∈ ℝ+)
7776reeflogd 25209 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
7873, 75, 773brtr4d 5100 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁))))
79 efle 15473 . . . . . . 7 (((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℝ ∧ (log‘(2 · 𝑁)) ∈ ℝ) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8069, 70, 79syl2anc 586 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → ((log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)) ↔ (exp‘(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))) ≤ (exp‘(log‘(2 · 𝑁)))))
8178, 80mpbird 259 . . . . 5 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ (log‘(2 · 𝑁)))
8246, 69, 70, 81fsumle 15156 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ≤ Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)))
8368recnd 10671 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
8458, 83syldan 593 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...𝐾) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) ∈ ℂ)
85 eldifn 4106 . . . . . . . . . . . . 13 (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
8685adantl 484 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ 𝑘 ∈ ((1...𝐾) ∩ ℙ))
87 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)))
8887eldifad 3950 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ))
8988elin1d 4177 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ (1...((2 · 𝑁)C𝑁)))
9089, 61syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℕ)
9190adantrr 715 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℕ)
9291nnred 11655 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℝ)
9388, 66syldan 593 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℕ)
9493nnred 11655 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9594adantrr 715 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ∈ ℝ)
9621adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (2 · 𝑁) ∈ ℝ)
9791nncnd 11656 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℂ)
9897exp1d 13508 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) = 𝑘)
9991nnge1d 11688 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 1 ≤ 𝑘)
100 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
101 nnuz 12284 . . . . . . . . . . . . . . . . . . . . 21 ℕ = (ℤ‘1)
102100, 101eleqtrdi 2925 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ (ℤ‘1))
10392, 99, 102leexp2ad 13620 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑1) ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
10498, 103eqbrtrrd 5092 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))))
1053adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑁 ∈ ℕ)
10688elin2d 4178 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℙ)
107106adantrr 715 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ℙ)
108105, 107, 72syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
10992, 95, 96, 104, 108letrd 10799 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ (2 · 𝑁))
110 elfzle2 12914 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (1...((2 · 𝑁)C𝑁)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11189, 110syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
112111adantrr 715 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ ((2 · 𝑁)C𝑁))
11349adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → ((2 · 𝑁)C𝑁) ∈ ℝ)
114 lemin 12588 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
11592, 96, 113, 114syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ↔ (𝑘 ≤ (2 · 𝑁) ∧ 𝑘 ≤ ((2 · 𝑁)C𝑁))))
116109, 112, 115mpbir2and 711 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ≤ if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)))
117116, 35breqtrrdi 5110 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘𝐾)
11837adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℕ)
119118nnzd 12089 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝐾 ∈ ℤ)
120 fznn 12978 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
121119, 120syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → (𝑘 ∈ (1...𝐾) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝐾)))
12291, 117, 121mpbir2and 711 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ (1...𝐾))
123122, 107elind 4173 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ (𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ)) ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)) → 𝑘 ∈ ((1...𝐾) ∩ ℙ))
124123expr 459 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → 𝑘 ∈ ((1...𝐾) ∩ ℙ)))
12586, 124mtod 200 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ)
12688, 65syldan 593 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
127 elnn0 11902 . . . . . . . . . . . . 13 ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0 ↔ ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
128126, 127sylib 220 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → ((𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ ∨ (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
129128ord 860 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (¬ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0))
130125, 129mpd 15 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) = 0)
131130oveq2d 7174 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = (𝑘↑0))
13290nncnd 11656 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → 𝑘 ∈ ℂ)
133132exp0d 13507 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑0) = 1)
134131, 133eqtrd 2858 . . . . . . . 8 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁))) = 1)
135134fveq2d 6676 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘1))
136 log1 25171 . . . . . . 7 (log‘1) = 0
137135, 136syl6eq 2874 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ (((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∖ ((1...𝐾) ∩ ℙ))) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = 0)
138 fzfid 13344 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → (1...((2 · 𝑁)C𝑁)) ∈ Fin)
139 inss1 4207 . . . . . . 7 ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))
140 ssfi 8740 . . . . . . 7 (((1...((2 · 𝑁)C𝑁)) ∈ Fin ∧ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ⊆ (1...((2 · 𝑁)C𝑁))) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
141138, 139, 140sylancl 588 . . . . . 6 (𝑁 ∈ (ℤ‘4) → ((1...((2 · 𝑁)C𝑁)) ∩ ℙ) ∈ Fin)
14257, 84, 137, 141fsumss 15084 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))))
14362nnrpd 12432 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → 𝑘 ∈ ℝ+)
14465nn0zd 12088 . . . . . . 7 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
145 relogexp 25181 . . . . . . 7 ((𝑘 ∈ ℝ+ ∧ (𝑘 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
146143, 144, 145syl2anc 586 . . . . . 6 ((𝑁 ∈ (ℤ‘4) ∧ 𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)) → (log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = ((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
147146sumeq2dv 15062 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)))
148 pclogsum 25793 . . . . . 6 (((2 · 𝑁)C𝑁) ∈ ℕ → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
14914, 148syl 17 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...((2 · 𝑁)C𝑁)) ∩ ℙ)((𝑘 pCnt ((2 · 𝑁)C𝑁)) · (log‘𝑘)) = (log‘((2 · 𝑁)C𝑁)))
150142, 147, 1493eqtrd 2862 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(𝑘↑(𝑘 pCnt ((2 · 𝑁)C𝑁)))) = (log‘((2 · 𝑁)C𝑁)))
15129recnd 10671 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℂ)
152 fsumconst 15147 . . . . . 6 ((((1...𝐾) ∩ ℙ) ∈ Fin ∧ (log‘(2 · 𝑁)) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
15346, 151, 152syl2anc 586 . . . . 5 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
154 2eluzge1 12297 . . . . . . 7 2 ∈ (ℤ‘1)
155 ppival2g 25708 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 2 ∈ (ℤ‘1)) → (π𝐾) = (♯‘((1...𝐾) ∩ ℙ)))
15647, 154, 155sylancl 588 . . . . . 6 (𝑁 ∈ (ℤ‘4) → (π𝐾) = (♯‘((1...𝐾) ∩ ℙ)))
157156oveq1d 7173 . . . . 5 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) = ((♯‘((1...𝐾) ∩ ℙ)) · (log‘(2 · 𝑁))))
158153, 157eqtr4d 2861 . . . 4 (𝑁 ∈ (ℤ‘4) → Σ𝑘 ∈ ((1...𝐾) ∩ ℙ)(log‘(2 · 𝑁)) = ((π𝐾) · (log‘(2 · 𝑁))))
15982, 150, 1583brtr3d 5099 . . 3 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π𝐾) · (log‘(2 · 𝑁))))
160 min1 12585 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ ((2 · 𝑁)C𝑁) ∈ ℝ) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16121, 49, 160syl2anc 586 . . . . . 6 (𝑁 ∈ (ℤ‘4) → if((2 · 𝑁) ≤ ((2 · 𝑁)C𝑁), (2 · 𝑁), ((2 · 𝑁)C𝑁)) ≤ (2 · 𝑁))
16235, 161eqbrtrid 5103 . . . . 5 (𝑁 ∈ (ℤ‘4) → 𝐾 ≤ (2 · 𝑁))
163 ppiwordi 25741 . . . . 5 ((𝐾 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ 𝐾 ≤ (2 · 𝑁)) → (π𝐾) ≤ (π‘(2 · 𝑁)))
16438, 21, 162, 163syl3anc 1367 . . . 4 (𝑁 ∈ (ℤ‘4) → (π𝐾) ≤ (π‘(2 · 𝑁)))
165 1red 10644 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 ∈ ℝ)
166 2re 11714 . . . . . . . 8 2 ∈ ℝ
167166a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ∈ ℝ)
168 1lt2 11811 . . . . . . . 8 1 < 2
169168a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 1 < 2)
170 2t1e2 11803 . . . . . . . 8 (2 · 1) = 2
1713nnge1d 11688 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → 1 ≤ 𝑁)
172 eluzelre 12257 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → 𝑁 ∈ ℝ)
173 2pos 11743 . . . . . . . . . . . 12 0 < 2
174166, 173pm3.2i 473 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
175174a1i 11 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘4) → (2 ∈ ℝ ∧ 0 < 2))
176 lemul2 11495 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
177165, 172, 175, 176syl3anc 1367 . . . . . . . . 9 (𝑁 ∈ (ℤ‘4) → (1 ≤ 𝑁 ↔ (2 · 1) ≤ (2 · 𝑁)))
178171, 177mpbid 234 . . . . . . . 8 (𝑁 ∈ (ℤ‘4) → (2 · 1) ≤ (2 · 𝑁))
179170, 178eqbrtrrid 5104 . . . . . . 7 (𝑁 ∈ (ℤ‘4) → 2 ≤ (2 · 𝑁))
180165, 167, 21, 169, 179ltletrd 10802 . . . . . 6 (𝑁 ∈ (ℤ‘4) → 1 < (2 · 𝑁))
18121, 180rplogcld 25214 . . . . 5 (𝑁 ∈ (ℤ‘4) → (log‘(2 · 𝑁)) ∈ ℝ+)
18241, 24, 181lemul1d 12477 . . . 4 (𝑁 ∈ (ℤ‘4) → ((π𝐾) ≤ (π‘(2 · 𝑁)) ↔ ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁)))))
183164, 182mpbid 234 . . 3 (𝑁 ∈ (ℤ‘4) → ((π𝐾) · (log‘(2 · 𝑁))) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18416, 42, 30, 159, 183letrd 10799 . 2 (𝑁 ∈ (ℤ‘4) → (log‘((2 · 𝑁)C𝑁)) ≤ ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
18510, 16, 30, 34, 184ltletrd 10802 1 (𝑁 ∈ (ℤ‘4) → (log‘((4↑𝑁) / 𝑁)) < ((π‘(2 · 𝑁)) · (log‘(2 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  cdif 3935  cin 3937  wss 3938  ifcif 4469   class class class wbr 5068  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  cn 11640  2c2 11695  4c4 11697  0cn0 11900  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  cexp 13432  Ccbc 13665  chash 13693  Σcsu 15044  expce 15417  cprime 16017   pCnt cpc 16175  logclog 25140  πcppi 25673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-pi 15428  df-dvds 15610  df-gcd 15846  df-prm 16018  df-pc 16176  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467  df-log 25142  df-ppi 25679
This theorem is referenced by:  chebbnd1lem3  26049
  Copyright terms: Public domain W3C validator