MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maxle Structured version   Visualization version   GIF version

Theorem maxle 12577
Description: Two ways of saying the maximum of two numbers is less than or equal to a third. (Contributed by NM, 29-Sep-2005.)
Assertion
Ref Expression
maxle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))

Proof of Theorem maxle
StepHypRef Expression
1 rexr 10679 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10679 . 2 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 rexr 10679 . 2 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
4 xrmaxle 12569 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
51, 2, 3, 4syl3an 1154 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (if(𝐴𝐵, 𝐵, 𝐴) ≤ 𝐶 ↔ (𝐴𝐶𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081  wcel 2106  ifcif 4469   class class class wbr 5062  cr 10528  *cxr 10666  cle 10668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-pre-lttri 10603  ax-pre-lttrn 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-po 5472  df-so 5473  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673
This theorem is referenced by:  rexanre  14699  rexico  14706  lo1resb  14914  o1resb  14916  rlimcn2  14940  o1of2  14962  o1rlimmul  14968  lo1le  15001  mbfposr  24168  itgle  24325  dvfsumrlim  24543  irrapxlem4  39284
  Copyright terms: Public domain W3C validator