![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladdass | Structured version Visualization version GIF version |
Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lfladdcl.r | β’ π = (Scalarβπ) |
lfladdcl.p | β’ + = (+gβπ ) |
lfladdcl.f | β’ πΉ = (LFnlβπ) |
lfladdcl.w | β’ (π β π β LMod) |
lfladdcl.g | β’ (π β πΊ β πΉ) |
lfladdcl.h | β’ (π β π» β πΉ) |
lfladdass.i | β’ (π β πΌ β πΉ) |
Ref | Expression |
---|---|
lfladdass | β’ (π β ((πΊ βf + π») βf + πΌ) = (πΊ βf + (π» βf + πΌ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6907 | . 2 β’ (π β (Baseβπ) β V) | |
2 | lfladdcl.w | . . 3 β’ (π β π β LMod) | |
3 | lfladdcl.g | . . 3 β’ (π β πΊ β πΉ) | |
4 | lfladdcl.r | . . . 4 β’ π = (Scalarβπ) | |
5 | eqid 2731 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
6 | eqid 2731 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
7 | lfladdcl.f | . . . 4 β’ πΉ = (LFnlβπ) | |
8 | 4, 5, 6, 7 | lflf 38237 | . . 3 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:(Baseβπ)βΆ(Baseβπ )) |
9 | 2, 3, 8 | syl2anc 583 | . 2 β’ (π β πΊ:(Baseβπ)βΆ(Baseβπ )) |
10 | lfladdcl.h | . . 3 β’ (π β π» β πΉ) | |
11 | 4, 5, 6, 7 | lflf 38237 | . . 3 β’ ((π β LMod β§ π» β πΉ) β π»:(Baseβπ)βΆ(Baseβπ )) |
12 | 2, 10, 11 | syl2anc 583 | . 2 β’ (π β π»:(Baseβπ)βΆ(Baseβπ )) |
13 | lfladdass.i | . . 3 β’ (π β πΌ β πΉ) | |
14 | 4, 5, 6, 7 | lflf 38237 | . . 3 β’ ((π β LMod β§ πΌ β πΉ) β πΌ:(Baseβπ)βΆ(Baseβπ )) |
15 | 2, 13, 14 | syl2anc 583 | . 2 β’ (π β πΌ:(Baseβπ)βΆ(Baseβπ )) |
16 | 4 | lmodring 20623 | . . . 4 β’ (π β LMod β π β Ring) |
17 | ringgrp 20133 | . . . 4 β’ (π β Ring β π β Grp) | |
18 | 2, 16, 17 | 3syl 18 | . . 3 β’ (π β π β Grp) |
19 | lfladdcl.p | . . . 4 β’ + = (+gβπ ) | |
20 | 5, 19 | grpass 18865 | . . 3 β’ ((π β Grp β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβπ ) β§ π§ β (Baseβπ ))) β ((π₯ + π¦) + π§) = (π₯ + (π¦ + π§))) |
21 | 18, 20 | sylan 579 | . 2 β’ ((π β§ (π₯ β (Baseβπ ) β§ π¦ β (Baseβπ ) β§ π§ β (Baseβπ ))) β ((π₯ + π¦) + π§) = (π₯ + (π¦ + π§))) |
22 | 1, 9, 12, 15, 21 | caofass 7710 | 1 β’ (π β ((πΊ βf + π») βf + πΌ) = (πΊ βf + (π» βf + πΌ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 Vcvv 3473 βΆwf 6540 βcfv 6544 (class class class)co 7412 βf cof 7671 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 Grpcgrp 18856 Ringcrg 20128 LModclmod 20615 LFnlclfn 38231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-map 8825 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-ring 20130 df-lmod 20617 df-lfl 38232 |
This theorem is referenced by: ldualgrplem 38319 |
Copyright terms: Public domain | W3C validator |