| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladdass | Structured version Visualization version GIF version | ||
| Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfladdcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfladdcl.p | ⊢ + = (+g‘𝑅) |
| lfladdcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfladdcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfladdcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lfladdcl.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| lfladdass.i | ⊢ (𝜑 → 𝐼 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lfladdass | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6873 | . 2 ⊢ (𝜑 → (Base‘𝑊) ∈ V) | |
| 2 | lfladdcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lfladdcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 4 | lfladdcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 5 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | lfladdcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 8 | 4, 5, 6, 7 | lflf 39056 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
| 9 | 2, 3, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
| 10 | lfladdcl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 11 | 4, 5, 6, 7 | lflf 39056 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
| 12 | 2, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
| 13 | lfladdass.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐹) | |
| 14 | 4, 5, 6, 7 | lflf 39056 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
| 15 | 2, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
| 16 | 4 | lmodring 20774 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 17 | ringgrp 20147 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 18 | 2, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 19 | lfladdcl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 20 | 5, 19 | grpass 18874 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 21 | 18, 20 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 22 | 1, 9, 12, 15, 21 | caofass 7693 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 Grpcgrp 18865 Ringcrg 20142 LModclmod 20766 LFnlclfn 39050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-map 8801 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-ring 20144 df-lmod 20768 df-lfl 39051 |
| This theorem is referenced by: ldualgrplem 39138 |
| Copyright terms: Public domain | W3C validator |