![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladdass | Structured version Visualization version GIF version |
Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lfladdcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfladdcl.p | ⊢ + = (+g‘𝑅) |
lfladdcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfladdcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfladdcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lfladdcl.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
lfladdass.i | ⊢ (𝜑 → 𝐼 ∈ 𝐹) |
Ref | Expression |
---|---|
lfladdass | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6916 | . 2 ⊢ (𝜑 → (Base‘𝑊) ∈ V) | |
2 | lfladdcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lfladdcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
4 | lfladdcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
5 | eqid 2726 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2726 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
7 | lfladdcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
8 | 4, 5, 6, 7 | lflf 38761 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
9 | 2, 3, 8 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
10 | lfladdcl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
11 | 4, 5, 6, 7 | lflf 38761 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
12 | 2, 10, 11 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
13 | lfladdass.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐹) | |
14 | 4, 5, 6, 7 | lflf 38761 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
15 | 2, 13, 14 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
16 | 4 | lmodring 20844 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
17 | ringgrp 20221 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
18 | 2, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
19 | lfladdcl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
20 | 5, 19 | grpass 18937 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
21 | 18, 20 | sylan 578 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
22 | 1, 9, 12, 15, 21 | caofass 7728 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ∘f cof 7688 Basecbs 17213 +gcplusg 17266 Scalarcsca 17269 Grpcgrp 18928 Ringcrg 20216 LModclmod 20836 LFnlclfn 38755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7690 df-map 8857 df-sgrp 18712 df-mnd 18728 df-grp 18931 df-ring 20218 df-lmod 20838 df-lfl 38756 |
This theorem is referenced by: ldualgrplem 38843 |
Copyright terms: Public domain | W3C validator |