| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladdass | Structured version Visualization version GIF version | ||
| Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfladdcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfladdcl.p | ⊢ + = (+g‘𝑅) |
| lfladdcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfladdcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfladdcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| lfladdcl.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
| lfladdass.i | ⊢ (𝜑 → 𝐼 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lfladdass | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6846 | . 2 ⊢ (𝜑 → (Base‘𝑊) ∈ V) | |
| 2 | lfladdcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 3 | lfladdcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 4 | lfladdcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 5 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 7 | lfladdcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 8 | 4, 5, 6, 7 | lflf 39172 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
| 9 | 2, 3, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
| 10 | lfladdcl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
| 11 | 4, 5, 6, 7 | lflf 39172 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
| 12 | 2, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
| 13 | lfladdass.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐹) | |
| 14 | 4, 5, 6, 7 | lflf 39172 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
| 15 | 2, 13, 14 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
| 16 | 4 | lmodring 20811 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 17 | ringgrp 20166 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 18 | 2, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 19 | lfladdcl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 20 | 5, 19 | grpass 18865 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 21 | 18, 20 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 22 | 1, 9, 12, 15, 21 | caofass 7659 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3438 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 Basecbs 17130 +gcplusg 17171 Scalarcsca 17174 Grpcgrp 18856 Ringcrg 20161 LModclmod 20803 LFnlclfn 39166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-map 8761 df-sgrp 18637 df-mnd 18653 df-grp 18859 df-ring 20163 df-lmod 20805 df-lfl 39167 |
| This theorem is referenced by: ldualgrplem 39254 |
| Copyright terms: Public domain | W3C validator |