![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladdass | Structured version Visualization version GIF version |
Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lfladdcl.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfladdcl.p | ⊢ + = (+g‘𝑅) |
lfladdcl.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfladdcl.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfladdcl.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lfladdcl.h | ⊢ (𝜑 → 𝐻 ∈ 𝐹) |
lfladdass.i | ⊢ (𝜑 → 𝐼 ∈ 𝐹) |
Ref | Expression |
---|---|
lfladdass | ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvexd 6935 | . 2 ⊢ (𝜑 → (Base‘𝑊) ∈ V) | |
2 | lfladdcl.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
3 | lfladdcl.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
4 | lfladdcl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
5 | eqid 2740 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | eqid 2740 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
7 | lfladdcl.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
8 | 4, 5, 6, 7 | lflf 39019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
9 | 2, 3, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐺:(Base‘𝑊)⟶(Base‘𝑅)) |
10 | lfladdcl.h | . . 3 ⊢ (𝜑 → 𝐻 ∈ 𝐹) | |
11 | 4, 5, 6, 7 | lflf 39019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐻 ∈ 𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
12 | 2, 10, 11 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐻:(Base‘𝑊)⟶(Base‘𝑅)) |
13 | lfladdass.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐹) | |
14 | 4, 5, 6, 7 | lflf 39019 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐼 ∈ 𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
15 | 2, 13, 14 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐼:(Base‘𝑊)⟶(Base‘𝑅)) |
16 | 4 | lmodring 20888 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
17 | ringgrp 20265 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
18 | 2, 16, 17 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
19 | lfladdcl.p | . . . 4 ⊢ + = (+g‘𝑅) | |
20 | 5, 19 | grpass 18982 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
21 | 18, 20 | sylan 579 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
22 | 1, 9, 12, 15, 21 | caofass 7752 | 1 ⊢ (𝜑 → ((𝐺 ∘f + 𝐻) ∘f + 𝐼) = (𝐺 ∘f + (𝐻 ∘f + 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 Basecbs 17258 +gcplusg 17311 Scalarcsca 17314 Grpcgrp 18973 Ringcrg 20260 LModclmod 20880 LFnlclfn 39013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-map 8886 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-ring 20262 df-lmod 20882 df-lfl 39014 |
This theorem is referenced by: ldualgrplem 39101 |
Copyright terms: Public domain | W3C validator |