Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdass Structured version   Visualization version   GIF version

Theorem lfladdass 36241
Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r 𝑅 = (Scalar‘𝑊)
lfladdcl.p + = (+g𝑅)
lfladdcl.f 𝐹 = (LFnl‘𝑊)
lfladdcl.w (𝜑𝑊 ∈ LMod)
lfladdcl.g (𝜑𝐺𝐹)
lfladdcl.h (𝜑𝐻𝐹)
lfladdass.i (𝜑𝐼𝐹)
Assertion
Ref Expression
lfladdass (𝜑 → ((𝐺f + 𝐻) ∘f + 𝐼) = (𝐺f + (𝐻f + 𝐼)))

Proof of Theorem lfladdass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6657 . 2 (𝜑 → (Base‘𝑊) ∈ V)
2 lfladdcl.w . . 3 (𝜑𝑊 ∈ LMod)
3 lfladdcl.g . . 3 (𝜑𝐺𝐹)
4 lfladdcl.r . . . 4 𝑅 = (Scalar‘𝑊)
5 eqid 2820 . . . 4 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2820 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 lfladdcl.f . . . 4 𝐹 = (LFnl‘𝑊)
84, 5, 6, 7lflf 36231 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅))
92, 3, 8syl2anc 586 . 2 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑅))
10 lfladdcl.h . . 3 (𝜑𝐻𝐹)
114, 5, 6, 7lflf 36231 . . 3 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅))
122, 10, 11syl2anc 586 . 2 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑅))
13 lfladdass.i . . 3 (𝜑𝐼𝐹)
144, 5, 6, 7lflf 36231 . . 3 ((𝑊 ∈ LMod ∧ 𝐼𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅))
152, 13, 14syl2anc 586 . 2 (𝜑𝐼:(Base‘𝑊)⟶(Base‘𝑅))
164lmodring 19614 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
17 ringgrp 19277 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
182, 16, 173syl 18 . . 3 (𝜑𝑅 ∈ Grp)
19 lfladdcl.p . . . 4 + = (+g𝑅)
205, 19grpass 18087 . . 3 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2118, 20sylan 582 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
221, 9, 12, 15, 21caofass 7417 1 (𝜑 → ((𝐺f + 𝐻) ∘f + 𝐼) = (𝐺f + (𝐻f + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3470  wf 6323  cfv 6327  (class class class)co 7129  f cof 7381  Basecbs 16458  +gcplusg 16540  Scalarcsca 16543  Grpcgrp 18078  Ringcrg 19272  LModclmod 19606  LFnlclfn 36225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-id 5432  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-ov 7132  df-oprab 7133  df-mpo 7134  df-of 7383  df-map 8382  df-sgrp 17876  df-mnd 17887  df-grp 18081  df-ring 19274  df-lmod 19608  df-lfl 36226
This theorem is referenced by:  ldualgrplem  36313
  Copyright terms: Public domain W3C validator