Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdass Structured version   Visualization version   GIF version

Theorem lfladdass 39091
Description: Associativity of functional addition. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r 𝑅 = (Scalar‘𝑊)
lfladdcl.p + = (+g𝑅)
lfladdcl.f 𝐹 = (LFnl‘𝑊)
lfladdcl.w (𝜑𝑊 ∈ LMod)
lfladdcl.g (𝜑𝐺𝐹)
lfladdcl.h (𝜑𝐻𝐹)
lfladdass.i (𝜑𝐼𝐹)
Assertion
Ref Expression
lfladdass (𝜑 → ((𝐺f + 𝐻) ∘f + 𝐼) = (𝐺f + (𝐻f + 𝐼)))

Proof of Theorem lfladdass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6832 . 2 (𝜑 → (Base‘𝑊) ∈ V)
2 lfladdcl.w . . 3 (𝜑𝑊 ∈ LMod)
3 lfladdcl.g . . 3 (𝜑𝐺𝐹)
4 lfladdcl.r . . . 4 𝑅 = (Scalar‘𝑊)
5 eqid 2730 . . . 4 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2730 . . . 4 (Base‘𝑊) = (Base‘𝑊)
7 lfladdcl.f . . . 4 𝐹 = (LFnl‘𝑊)
84, 5, 6, 7lflf 39081 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:(Base‘𝑊)⟶(Base‘𝑅))
92, 3, 8syl2anc 584 . 2 (𝜑𝐺:(Base‘𝑊)⟶(Base‘𝑅))
10 lfladdcl.h . . 3 (𝜑𝐻𝐹)
114, 5, 6, 7lflf 39081 . . 3 ((𝑊 ∈ LMod ∧ 𝐻𝐹) → 𝐻:(Base‘𝑊)⟶(Base‘𝑅))
122, 10, 11syl2anc 584 . 2 (𝜑𝐻:(Base‘𝑊)⟶(Base‘𝑅))
13 lfladdass.i . . 3 (𝜑𝐼𝐹)
144, 5, 6, 7lflf 39081 . . 3 ((𝑊 ∈ LMod ∧ 𝐼𝐹) → 𝐼:(Base‘𝑊)⟶(Base‘𝑅))
152, 13, 14syl2anc 584 . 2 (𝜑𝐼:(Base‘𝑊)⟶(Base‘𝑅))
164lmodring 20794 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
17 ringgrp 20149 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
182, 16, 173syl 18 . . 3 (𝜑𝑅 ∈ Grp)
19 lfladdcl.p . . . 4 + = (+g𝑅)
205, 19grpass 18847 . . 3 ((𝑅 ∈ Grp ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2118, 20sylan 580 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
221, 9, 12, 15, 21caofass 7645 1 (𝜑 → ((𝐺f + 𝐻) ∘f + 𝐼) = (𝐺f + (𝐻f + 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110  Vcvv 3434  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  Basecbs 17112  +gcplusg 17153  Scalarcsca 17156  Grpcgrp 18838  Ringcrg 20144  LModclmod 20786  LFnlclfn 39075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-map 8747  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-ring 20146  df-lmod 20788  df-lfl 39076
This theorem is referenced by:  ldualgrplem  39163
  Copyright terms: Public domain W3C validator