MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limccl Structured version   Visualization version   GIF version

Theorem limccl 24076
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
limccl (𝐹 lim 𝐵) ⊆ ℂ

Proof of Theorem limccl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limcrcl 24075 . . . . 5 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ))
2 eqid 2778 . . . . . 6 ((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵}))
3 eqid 2778 . . . . . 6 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
42, 3limcfval 24073 . . . . 5 ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (dom 𝐹 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
51, 4syl 17 . . . 4 (𝑥 ∈ (𝐹 lim 𝐵) → ((𝐹 lim 𝐵) = {𝑦 ∣ (𝑧 ∈ (dom 𝐹 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)} ∧ (𝐹 lim 𝐵) ⊆ ℂ))
65simprd 491 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → (𝐹 lim 𝐵) ⊆ ℂ)
7 id 22 . . 3 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ (𝐹 lim 𝐵))
86, 7sseldd 3822 . 2 (𝑥 ∈ (𝐹 lim 𝐵) → 𝑥 ∈ ℂ)
98ssriv 3825 1 (𝐹 lim 𝐵) ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wa 386  w3a 1071   = wceq 1601  wcel 2107  {cab 2763  cun 3790  wss 3792  ifcif 4307  {csn 4398  cmpt 4965  dom cdm 5355  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  t crest 16467  TopOpenctopn 16468  fldccnfld 20142   CnP ccnp 21437   lim climc 24063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fi 8605  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-rest 16469  df-topn 16470  df-topgen 16490  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cnp 21440  df-xms 22533  df-ms 22534  df-limc 24067
This theorem is referenced by:  ellimc2  24078  limcres  24087  limcco  24094  limciun  24095  limcun  24096  dvfval  24098  dvcl  24100  lhop1lem  24213  mullimc  40756  limcdm0  40758  limccog  40760  mullimcf  40763  limcperiod  40768  limcrecl  40769  limcleqr  40784  neglimc  40787  addlimc  40788  limclner  40791  sublimc  40792  reclimc  40793  divlimc  40796  cncfiooicclem1  41034  cncfiooicc  41035  itgioocnicc  41120  iblcncfioo  41121  fourierdlem60  41310  fourierdlem61  41311  fourierdlem73  41323  fourierdlem74  41324  fourierdlem75  41325  fourierdlem81  41331  fourierdlem103  41353  fourierdlem104  41354  fourierdlem112  41362
  Copyright terms: Public domain W3C validator