![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limccl | Structured version Visualization version GIF version |
Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limccl | β’ (πΉ limβ π΅) β β |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcrcl 25615 | . . . . 5 β’ (π₯ β (πΉ limβ π΅) β (πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β)) | |
2 | eqid 2732 | . . . . . 6 β’ ((TopOpenββfld) βΎt (dom πΉ βͺ {π΅})) = ((TopOpenββfld) βΎt (dom πΉ βͺ {π΅})) | |
3 | eqid 2732 | . . . . . 6 β’ (TopOpenββfld) = (TopOpenββfld) | |
4 | 2, 3 | limcfval 25613 | . . . . 5 β’ ((πΉ:dom πΉβΆβ β§ dom πΉ β β β§ π΅ β β) β ((πΉ limβ π΅) = {π¦ β£ (π§ β (dom πΉ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((((TopOpenββfld) βΎt (dom πΉ βͺ {π΅})) CnP (TopOpenββfld))βπ΅)} β§ (πΉ limβ π΅) β β)) |
5 | 1, 4 | syl 17 | . . . 4 β’ (π₯ β (πΉ limβ π΅) β ((πΉ limβ π΅) = {π¦ β£ (π§ β (dom πΉ βͺ {π΅}) β¦ if(π§ = π΅, π¦, (πΉβπ§))) β ((((TopOpenββfld) βΎt (dom πΉ βͺ {π΅})) CnP (TopOpenββfld))βπ΅)} β§ (πΉ limβ π΅) β β)) |
6 | 5 | simprd 496 | . . 3 β’ (π₯ β (πΉ limβ π΅) β (πΉ limβ π΅) β β) |
7 | id 22 | . . 3 β’ (π₯ β (πΉ limβ π΅) β π₯ β (πΉ limβ π΅)) | |
8 | 6, 7 | sseldd 3983 | . 2 β’ (π₯ β (πΉ limβ π΅) β π₯ β β) |
9 | 8 | ssriv 3986 | 1 β’ (πΉ limβ π΅) β β |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 {cab 2709 βͺ cun 3946 β wss 3948 ifcif 4528 {csn 4628 β¦ cmpt 5231 dom cdm 5676 βΆwf 6539 βcfv 6543 (class class class)co 7411 βcc 11110 βΎt crest 17370 TopOpenctopn 17371 βfldccnfld 21144 CnP ccnp 22949 limβ climc 25603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fi 9408 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-fz 13489 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17084 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-mulr 17215 df-starv 17216 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-rest 17372 df-topn 17373 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cnp 22952 df-xms 24046 df-ms 24047 df-limc 25607 |
This theorem is referenced by: ellimc2 25618 limcres 25627 limcco 25634 limciun 25635 limcun 25636 dvfval 25638 dvcl 25640 lhop1lem 25754 mullimc 44631 limcdm0 44633 limccog 44635 mullimcf 44638 limcperiod 44643 limcrecl 44644 limcleqr 44659 neglimc 44662 addlimc 44663 limclner 44666 sublimc 44667 reclimc 44668 divlimc 44671 cncfiooicclem1 44908 cncfiooicc 44909 itgioocnicc 44992 iblcncfioo 44993 fourierdlem60 45181 fourierdlem61 45182 fourierdlem73 45194 fourierdlem74 45195 fourierdlem75 45196 fourierdlem81 45202 fourierdlem103 45224 fourierdlem104 45225 fourierdlem112 45233 |
Copyright terms: Public domain | W3C validator |