| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limccl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limccl | ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcrcl 25791 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) | |
| 3 | eqid 2729 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 4 | 2, 3 | limcfval 25789 | . . . . 5 ⊢ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (dom 𝐹 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (dom 𝐹 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) |
| 6 | 5 | simprd 495 | . . 3 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ⊆ ℂ) |
| 7 | id 22 | . . 3 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ (𝐹 limℂ 𝐵)) | |
| 8 | 6, 7 | sseldd 3938 | . 2 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ ℂ) |
| 9 | 8 | ssriv 3941 | 1 ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∪ cun 3903 ⊆ wss 3905 ifcif 4478 {csn 4579 ↦ cmpt 5176 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ↾t crest 17342 TopOpenctopn 17343 ℂfldccnfld 21279 CnP ccnp 23128 limℂ climc 25779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fi 9320 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-fz 13429 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-rest 17344 df-topn 17345 df-topgen 17365 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cnp 23131 df-xms 24224 df-ms 24225 df-limc 25783 |
| This theorem is referenced by: ellimc2 25794 limcres 25803 limcco 25810 limciun 25811 limcun 25812 dvfval 25814 dvcl 25816 lhop1lem 25934 mullimc 45598 limcdm0 45600 limccog 45602 mullimcf 45605 limcperiod 45610 limcrecl 45611 limcleqr 45626 neglimc 45629 addlimc 45630 limclner 45633 sublimc 45634 reclimc 45635 divlimc 45638 cncfiooicclem1 45875 cncfiooicc 45876 itgioocnicc 45959 iblcncfioo 45960 fourierdlem60 46148 fourierdlem61 46149 fourierdlem73 46161 fourierdlem74 46162 fourierdlem75 46163 fourierdlem81 46169 fourierdlem103 46191 fourierdlem104 46192 fourierdlem112 46200 |
| Copyright terms: Public domain | W3C validator |