|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > limccl | Structured version Visualization version GIF version | ||
| Description: Closure of the limit operator. (Contributed by Mario Carneiro, 25-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| limccl | ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | limcrcl 25910 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) | |
| 2 | eqid 2736 | . . . . . 6 ⊢ ((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) = ((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) | |
| 3 | eqid 2736 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 4 | 2, 3 | limcfval 25908 | . . . . 5 ⊢ ((𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (dom 𝐹 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) | 
| 5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → ((𝐹 limℂ 𝐵) = {𝑦 ∣ (𝑧 ∈ (dom 𝐹 ∪ {𝐵}) ↦ if(𝑧 = 𝐵, 𝑦, (𝐹‘𝑧))) ∈ ((((TopOpen‘ℂfld) ↾t (dom 𝐹 ∪ {𝐵})) CnP (TopOpen‘ℂfld))‘𝐵)} ∧ (𝐹 limℂ 𝐵) ⊆ ℂ)) | 
| 6 | 5 | simprd 495 | . . 3 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → (𝐹 limℂ 𝐵) ⊆ ℂ) | 
| 7 | id 22 | . . 3 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ (𝐹 limℂ 𝐵)) | |
| 8 | 6, 7 | sseldd 3983 | . 2 ⊢ (𝑥 ∈ (𝐹 limℂ 𝐵) → 𝑥 ∈ ℂ) | 
| 9 | 8 | ssriv 3986 | 1 ⊢ (𝐹 limℂ 𝐵) ⊆ ℂ | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 {cab 2713 ∪ cun 3948 ⊆ wss 3950 ifcif 4524 {csn 4625 ↦ cmpt 5224 dom cdm 5684 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ↾t crest 17466 TopOpenctopn 17467 ℂfldccnfld 21365 CnP ccnp 23234 limℂ climc 25898 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fi 9452 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-fz 13549 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-rest 17468 df-topn 17469 df-topgen 17489 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cnp 23237 df-xms 24331 df-ms 24332 df-limc 25902 | 
| This theorem is referenced by: ellimc2 25913 limcres 25922 limcco 25929 limciun 25930 limcun 25931 dvfval 25933 dvcl 25935 lhop1lem 26053 mullimc 45636 limcdm0 45638 limccog 45640 mullimcf 45643 limcperiod 45648 limcrecl 45649 limcleqr 45664 neglimc 45667 addlimc 45668 limclner 45671 sublimc 45672 reclimc 45673 divlimc 45676 cncfiooicclem1 45913 cncfiooicc 45914 itgioocnicc 45997 iblcncfioo 45998 fourierdlem60 46186 fourierdlem61 46187 fourierdlem73 46199 fourierdlem74 46200 fourierdlem75 46201 fourierdlem81 46207 fourierdlem103 46229 fourierdlem104 46230 fourierdlem112 46238 | 
| Copyright terms: Public domain | W3C validator |