| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumvsmul1 | Structured version Visualization version GIF version | ||
| Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20237, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| Ref | Expression |
|---|---|
| gsumvsmul1.b | ⊢ 𝐵 = (Base‘𝑅) |
| gsumvsmul1.s | ⊢ 𝑆 = (Scalar‘𝑅) |
| gsumvsmul1.k | ⊢ 𝐾 = (Base‘𝑆) |
| gsumvsmul1.z | ⊢ 0 = (0g‘𝑆) |
| gsumvsmul1.t | ⊢ · = ( ·𝑠 ‘𝑅) |
| gsumvsmul1.r | ⊢ (𝜑 → 𝑅 ∈ LMod) |
| gsumvsmul1.1 | ⊢ (𝜑 → 𝑆 ∈ CMnd) |
| gsumvsmul1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumvsmul1.x | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsumvsmul1.y | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐾) |
| gsumvsmul1.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumvsmul1 | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvsmul1.k | . 2 ⊢ 𝐾 = (Base‘𝑆) | |
| 2 | gsumvsmul1.z | . 2 ⊢ 0 = (0g‘𝑆) | |
| 3 | gsumvsmul1.1 | . 2 ⊢ (𝜑 → 𝑆 ∈ CMnd) | |
| 4 | gsumvsmul1.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ LMod) | |
| 5 | lmodcmn 20849 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ CMnd) | |
| 6 | cmnmnd 19712 | . . 3 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 7 | 4, 5, 6 | 3syl 18 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 8 | gsumvsmul1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsumvsmul1.x | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | gsumvsmul1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | gsumvsmul1.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑅) | |
| 12 | gsumvsmul1.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 13 | 10, 11, 12, 1 | lmodvslmhm 33034 | . . . 4 ⊢ ((𝑅 ∈ LMod ∧ 𝑌 ∈ 𝐵) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝑆 GrpHom 𝑅)) |
| 14 | 4, 9, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝑆 GrpHom 𝑅)) |
| 15 | ghmmhm 19141 | . . 3 ⊢ ((𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝑆 GrpHom 𝑅) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝑆 MndHom 𝑅)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝑆 MndHom 𝑅)) |
| 17 | gsumvsmul1.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐾) | |
| 18 | gsumvsmul1.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) | |
| 19 | oveq1 7376 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 𝑌) = (𝑋 · 𝑌)) | |
| 20 | oveq1 7376 | . 2 ⊢ (𝑥 = (𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) → (𝑥 · 𝑌) = ((𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | |
| 21 | 1, 2, 3, 7, 8, 16, 17, 18, 19, 20 | gsummhm2 19854 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 finSupp cfsupp 9288 Basecbs 17156 Scalarcsca 17200 ·𝑠 cvsca 17201 0gc0g 17379 Σg cgsu 17380 Mndcmnd 18644 MndHom cmhm 18691 GrpHom cghm 19127 CMndccmn 19695 LModclmod 20799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 df-fzo 13594 df-seq 13945 df-hash 14274 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-0g 17381 df-gsum 17382 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-grp 18851 df-minusg 18852 df-ghm 19128 df-cntz 19232 df-cmn 19697 df-abl 19698 df-mgp 20062 df-ur 20103 df-ring 20156 df-lmod 20801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |