![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumvsmul1 | Structured version Visualization version GIF version |
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20121, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
Ref | Expression |
---|---|
gsumvsmul1.b | β’ π΅ = (Baseβπ ) |
gsumvsmul1.s | β’ π = (Scalarβπ ) |
gsumvsmul1.k | β’ πΎ = (Baseβπ) |
gsumvsmul1.z | β’ 0 = (0gβπ) |
gsumvsmul1.t | β’ Β· = ( Β·π βπ ) |
gsumvsmul1.r | β’ (π β π β LMod) |
gsumvsmul1.1 | β’ (π β π β CMnd) |
gsumvsmul1.a | β’ (π β π΄ β π) |
gsumvsmul1.x | β’ (π β π β π΅) |
gsumvsmul1.y | β’ ((π β§ π β π΄) β π β πΎ) |
gsumvsmul1.n | β’ (π β (π β π΄ β¦ π) finSupp 0 ) |
Ref | Expression |
---|---|
gsumvsmul1 | β’ (π β (π Ξ£g (π β π΄ β¦ (π Β· π))) = ((π Ξ£g (π β π΄ β¦ π)) Β· π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvsmul1.k | . 2 β’ πΎ = (Baseβπ) | |
2 | gsumvsmul1.z | . 2 β’ 0 = (0gβπ) | |
3 | gsumvsmul1.1 | . 2 β’ (π β π β CMnd) | |
4 | gsumvsmul1.r | . . 3 β’ (π β π β LMod) | |
5 | lmodcmn 20512 | . . 3 β’ (π β LMod β π β CMnd) | |
6 | cmnmnd 19659 | . . 3 β’ (π β CMnd β π β Mnd) | |
7 | 4, 5, 6 | 3syl 18 | . 2 β’ (π β π β Mnd) |
8 | gsumvsmul1.a | . 2 β’ (π β π΄ β π) | |
9 | gsumvsmul1.x | . . . 4 β’ (π β π β π΅) | |
10 | gsumvsmul1.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
11 | gsumvsmul1.s | . . . . 5 β’ π = (Scalarβπ ) | |
12 | gsumvsmul1.t | . . . . 5 β’ Β· = ( Β·π βπ ) | |
13 | 10, 11, 12, 1 | lmodvslmhm 32189 | . . . 4 β’ ((π β LMod β§ π β π΅) β (π₯ β πΎ β¦ (π₯ Β· π)) β (π GrpHom π )) |
14 | 4, 9, 13 | syl2anc 584 | . . 3 β’ (π β (π₯ β πΎ β¦ (π₯ Β· π)) β (π GrpHom π )) |
15 | ghmmhm 19096 | . . 3 β’ ((π₯ β πΎ β¦ (π₯ Β· π)) β (π GrpHom π ) β (π₯ β πΎ β¦ (π₯ Β· π)) β (π MndHom π )) | |
16 | 14, 15 | syl 17 | . 2 β’ (π β (π₯ β πΎ β¦ (π₯ Β· π)) β (π MndHom π )) |
17 | gsumvsmul1.y | . 2 β’ ((π β§ π β π΄) β π β πΎ) | |
18 | gsumvsmul1.n | . 2 β’ (π β (π β π΄ β¦ π) finSupp 0 ) | |
19 | oveq1 7412 | . 2 β’ (π₯ = π β (π₯ Β· π) = (π Β· π)) | |
20 | oveq1 7412 | . 2 β’ (π₯ = (π Ξ£g (π β π΄ β¦ π)) β (π₯ Β· π) = ((π Ξ£g (π β π΄ β¦ π)) Β· π)) | |
21 | 1, 2, 3, 7, 8, 16, 17, 18, 19, 20 | gsummhm2 19801 | 1 β’ (π β (π Ξ£g (π β π΄ β¦ (π Β· π))) = ((π Ξ£g (π β π΄ β¦ π)) Β· π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 class class class wbr 5147 β¦ cmpt 5230 βcfv 6540 (class class class)co 7405 finSupp cfsupp 9357 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 Ξ£g cgsu 17382 Mndcmnd 18621 MndHom cmhm 18665 GrpHom cghm 19083 CMndccmn 19642 LModclmod 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |