Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmlnogt0 | Structured version Visualization version GIF version |
Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmlnogt0.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmlnogt0.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
nmlnogt0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
nmlnogt0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmlnogt0.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
2 | nmlnogt0.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
3 | nmlnogt0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
4 | 1, 2, 3 | nmlno0 28876 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) |
5 | 4 | necon3bid 2985 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) ≠ 0 ↔ 𝑇 ≠ 𝑍)) |
6 | eqid 2737 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
7 | eqid 2737 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
8 | 6, 7, 3 | lnof 28836 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) |
9 | 6, 7, 1 | nmoxr 28847 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁‘𝑇) ∈ ℝ*) |
10 | 6, 7, 1 | nmooge0 28848 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → 0 ≤ (𝑁‘𝑇)) |
11 | 0xr 10880 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
12 | xrlttri2 12732 | . . . . . . 7 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) | |
13 | 11, 12 | mpan2 691 | . . . . . 6 ⊢ ((𝑁‘𝑇) ∈ ℝ* → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
14 | 13 | adantr 484 | . . . . 5 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
15 | xrlenlt 10898 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ (𝑁‘𝑇) ∈ ℝ*) → (0 ≤ (𝑁‘𝑇) ↔ ¬ (𝑁‘𝑇) < 0)) | |
16 | 11, 15 | mpan 690 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ∈ ℝ* → (0 ≤ (𝑁‘𝑇) ↔ ¬ (𝑁‘𝑇) < 0)) |
17 | 16 | biimpa 480 | . . . . . 6 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ¬ (𝑁‘𝑇) < 0) |
18 | biorf 937 | . . . . . 6 ⊢ (¬ (𝑁‘𝑇) < 0 → (0 < (𝑁‘𝑇) ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → (0 < (𝑁‘𝑇) ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
20 | 14, 19 | bitr4d 285 | . . . 4 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
21 | 9, 10, 20 | syl2anc 587 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
22 | 8, 21 | syld3an3 1411 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
23 | 5, 22 | bitr3d 284 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∨ wo 847 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 ⟶wf 6376 ‘cfv 6380 (class class class)co 7213 0cc0 10729 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 NrmCVeccnv 28665 BaseSetcba 28667 LnOp clno 28821 normOpOLD cnmoo 28822 0op c0o 28824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-grpo 28574 df-gid 28575 df-ginv 28576 df-ablo 28626 df-vc 28640 df-nv 28673 df-va 28676 df-ba 28677 df-sm 28678 df-0v 28679 df-nmcv 28681 df-lno 28825 df-nmoo 28826 df-0o 28828 |
This theorem is referenced by: blocni 28886 |
Copyright terms: Public domain | W3C validator |