| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmlnogt0 | Structured version Visualization version GIF version | ||
| Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nmlnogt0.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| nmlnogt0.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
| nmlnogt0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
| Ref | Expression |
|---|---|
| nmlnogt0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnogt0.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
| 2 | nmlnogt0.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
| 3 | nmlnogt0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
| 4 | 1, 2, 3 | nmlno0 30782 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) |
| 5 | 4 | necon3bid 2972 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) ≠ 0 ↔ 𝑇 ≠ 𝑍)) |
| 6 | eqid 2731 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 7 | eqid 2731 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
| 8 | 6, 7, 3 | lnof 30742 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) |
| 9 | 6, 7, 1 | nmoxr 30753 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁‘𝑇) ∈ ℝ*) |
| 10 | 6, 7, 1 | nmooge0 30754 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → 0 ≤ (𝑁‘𝑇)) |
| 11 | 0xr 11165 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
| 12 | xrlttri2 13047 | . . . . . . 7 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) | |
| 13 | 11, 12 | mpan2 691 | . . . . . 6 ⊢ ((𝑁‘𝑇) ∈ ℝ* → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
| 14 | 13 | adantr 480 | . . . . 5 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
| 15 | xrlenlt 11183 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ (𝑁‘𝑇) ∈ ℝ*) → (0 ≤ (𝑁‘𝑇) ↔ ¬ (𝑁‘𝑇) < 0)) | |
| 16 | 11, 15 | mpan 690 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ∈ ℝ* → (0 ≤ (𝑁‘𝑇) ↔ ¬ (𝑁‘𝑇) < 0)) |
| 17 | 16 | biimpa 476 | . . . . . 6 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ¬ (𝑁‘𝑇) < 0) |
| 18 | biorf 936 | . . . . . 6 ⊢ (¬ (𝑁‘𝑇) < 0 → (0 < (𝑁‘𝑇) ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → (0 < (𝑁‘𝑇) ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
| 20 | 14, 19 | bitr4d 282 | . . . 4 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
| 21 | 9, 10, 20 | syl2anc 584 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
| 22 | 8, 21 | syld3an3 1411 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
| 23 | 5, 22 | bitr3d 281 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5093 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 0cc0 11012 ℝ*cxr 11151 < clt 11152 ≤ cle 11153 NrmCVeccnv 30571 BaseSetcba 30573 LnOp clno 30727 normOpOLD cnmoo 30728 0op c0o 30730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9332 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-seq 13915 df-exp 13975 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-grpo 30480 df-gid 30481 df-ginv 30482 df-ablo 30532 df-vc 30546 df-nv 30579 df-va 30582 df-ba 30583 df-sm 30584 df-0v 30585 df-nmcv 30587 df-lno 30731 df-nmoo 30732 df-0o 30734 |
| This theorem is referenced by: blocni 30792 |
| Copyright terms: Public domain | W3C validator |