![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmlnogt0 | Structured version Visualization version GIF version |
Description: The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nmlnogt0.3 | ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
nmlnogt0.0 | ⊢ 𝑍 = (𝑈 0op 𝑊) |
nmlnogt0.7 | ⊢ 𝐿 = (𝑈 LnOp 𝑊) |
Ref | Expression |
---|---|
nmlnogt0 | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmlnogt0.3 | . . . 4 ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) | |
2 | nmlnogt0.0 | . . . 4 ⊢ 𝑍 = (𝑈 0op 𝑊) | |
3 | nmlnogt0.7 | . . . 4 ⊢ 𝐿 = (𝑈 LnOp 𝑊) | |
4 | 1, 2, 3 | nmlno0 30827 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) |
5 | 4 | necon3bid 2991 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) ≠ 0 ↔ 𝑇 ≠ 𝑍)) |
6 | eqid 2740 | . . . 4 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
7 | eqid 2740 | . . . 4 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
8 | 6, 7, 3 | lnof 30787 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) |
9 | 6, 7, 1 | nmoxr 30798 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → (𝑁‘𝑇) ∈ ℝ*) |
10 | 6, 7, 1 | nmooge0 30799 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → 0 ≤ (𝑁‘𝑇)) |
11 | 0xr 11337 | . . . . . . 7 ⊢ 0 ∈ ℝ* | |
12 | xrlttri2 13204 | . . . . . . 7 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) | |
13 | 11, 12 | mpan2 690 | . . . . . 6 ⊢ ((𝑁‘𝑇) ∈ ℝ* → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
14 | 13 | adantr 480 | . . . . 5 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ((𝑁‘𝑇) ≠ 0 ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
15 | xrlenlt 11355 | . . . . . . . 8 ⊢ ((0 ∈ ℝ* ∧ (𝑁‘𝑇) ∈ ℝ*) → (0 ≤ (𝑁‘𝑇) ↔ ¬ (𝑁‘𝑇) < 0)) | |
16 | 11, 15 | mpan 689 | . . . . . . 7 ⊢ ((𝑁‘𝑇) ∈ ℝ* → (0 ≤ (𝑁‘𝑇) ↔ ¬ (𝑁‘𝑇) < 0)) |
17 | 16 | biimpa 476 | . . . . . 6 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ¬ (𝑁‘𝑇) < 0) |
18 | biorf 935 | . . . . . 6 ⊢ (¬ (𝑁‘𝑇) < 0 → (0 < (𝑁‘𝑇) ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → (0 < (𝑁‘𝑇) ↔ ((𝑁‘𝑇) < 0 ∨ 0 < (𝑁‘𝑇)))) |
20 | 14, 19 | bitr4d 282 | . . . 4 ⊢ (((𝑁‘𝑇) ∈ ℝ* ∧ 0 ≤ (𝑁‘𝑇)) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
21 | 9, 10, 20 | syl2anc 583 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:(BaseSet‘𝑈)⟶(BaseSet‘𝑊)) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
22 | 8, 21 | syld3an3 1409 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) ≠ 0 ↔ 0 < (𝑁‘𝑇))) |
23 | 5, 22 | bitr3d 281 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 0cc0 11184 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 NrmCVeccnv 30616 BaseSetcba 30618 LnOp clno 30772 normOpOLD cnmoo 30773 0op c0o 30775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-grpo 30525 df-gid 30526 df-ginv 30527 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-nmcv 30632 df-lno 30776 df-nmoo 30777 df-0o 30779 |
This theorem is referenced by: blocni 30837 |
Copyright terms: Public domain | W3C validator |