MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnoubi Structured version   Visualization version   GIF version

Theorem nmlnoubi 28579
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnoubi.1 𝑋 = (BaseSet‘𝑈)
nmlnoubi.z 𝑍 = (0vec𝑈)
nmlnoubi.k 𝐾 = (normCV𝑈)
nmlnoubi.m 𝑀 = (normCV𝑊)
nmlnoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnoubi.7 𝐿 = (𝑈 LnOp 𝑊)
nmlnoubi.u 𝑈 ∈ NrmCVec
nmlnoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmlnoubi ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem nmlnoubi
StepHypRef Expression
1 2fveq3 6650 . . . . . . 7 (𝑥 = 𝑍 → (𝑀‘(𝑇𝑥)) = (𝑀‘(𝑇𝑍)))
2 fveq2 6645 . . . . . . . 8 (𝑥 = 𝑍 → (𝐾𝑥) = (𝐾𝑍))
32oveq2d 7151 . . . . . . 7 (𝑥 = 𝑍 → (𝐴 · (𝐾𝑥)) = (𝐴 · (𝐾𝑍)))
41, 3breq12d 5043 . . . . . 6 (𝑥 = 𝑍 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)) ↔ (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍))))
5 id 22 . . . . . . . 8 ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
65imp 410 . . . . . . 7 (((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
76adantll 713 . . . . . 6 ((((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
8 0le0 11726 . . . . . . . 8 0 ≤ 0
9 nmlnoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
10 nmlnoubi.w . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
11 nmlnoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
12 eqid 2798 . . . . . . . . . . . . . 14 (BaseSet‘𝑊) = (BaseSet‘𝑊)
13 nmlnoubi.z . . . . . . . . . . . . . 14 𝑍 = (0vec𝑈)
14 eqid 2798 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
15 nmlnoubi.7 . . . . . . . . . . . . . 14 𝐿 = (𝑈 LnOp 𝑊)
1611, 12, 13, 14, 15lno0 28539 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
179, 10, 16mp3an12 1448 . . . . . . . . . . . 12 (𝑇𝐿 → (𝑇𝑍) = (0vec𝑊))
1817fveq2d 6649 . . . . . . . . . . 11 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = (𝑀‘(0vec𝑊)))
19 nmlnoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
2014, 19nvz0 28451 . . . . . . . . . . . 12 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
2110, 20ax-mp 5 . . . . . . . . . . 11 (𝑀‘(0vec𝑊)) = 0
2218, 21eqtrdi 2849 . . . . . . . . . 10 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = 0)
2322adantr 484 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) = 0)
24 nmlnoubi.k . . . . . . . . . . . . . 14 𝐾 = (normCV𝑈)
2513, 24nvz0 28451 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝐾𝑍) = 0)
269, 25ax-mp 5 . . . . . . . . . . . 12 (𝐾𝑍) = 0
2726oveq2i 7146 . . . . . . . . . . 11 (𝐴 · (𝐾𝑍)) = (𝐴 · 0)
28 recn 10616 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2928mul01d 10828 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
3027, 29syl5eq 2845 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 · (𝐾𝑍)) = 0)
3130ad2antrl 727 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · (𝐾𝑍)) = 0)
3223, 31breq12d 5043 . . . . . . . 8 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)) ↔ 0 ≤ 0))
338, 32mpbiri 261 . . . . . . 7 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
3433adantr 484 . . . . . 6 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
354, 7, 34pm2.61ne 3072 . . . . 5 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3635ex 416 . . . 4 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
3736ralimdv 3145 . . 3 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
38373impia 1114 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3911, 12, 15lnof 28538 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
409, 10, 39mp3an12 1448 . . 3 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
41 nmlnoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
4211, 12, 24, 19, 41, 9, 10nmoub2i 28557 . . 3 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4340, 42syl3an1 1160 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4438, 43syld3an3 1406 1 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106   class class class wbr 5030  wf 6320  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   · cmul 10531  cle 10665  NrmCVeccnv 28367  BaseSetcba 28369  0veccn0v 28371  normCVcnmcv 28373   LnOp clno 28523   normOpOLD cnmoo 28524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-grpo 28276  df-gid 28277  df-ginv 28278  df-ablo 28328  df-vc 28342  df-nv 28375  df-va 28378  df-ba 28379  df-sm 28380  df-0v 28381  df-nmcv 28383  df-lno 28527  df-nmoo 28528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator