MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnoubi Structured version   Visualization version   GIF version

Theorem nmlnoubi 30825
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnoubi.1 𝑋 = (BaseSet‘𝑈)
nmlnoubi.z 𝑍 = (0vec𝑈)
nmlnoubi.k 𝐾 = (normCV𝑈)
nmlnoubi.m 𝑀 = (normCV𝑊)
nmlnoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnoubi.7 𝐿 = (𝑈 LnOp 𝑊)
nmlnoubi.u 𝑈 ∈ NrmCVec
nmlnoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmlnoubi ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem nmlnoubi
StepHypRef Expression
1 2fveq3 6912 . . . . . . 7 (𝑥 = 𝑍 → (𝑀‘(𝑇𝑥)) = (𝑀‘(𝑇𝑍)))
2 fveq2 6907 . . . . . . . 8 (𝑥 = 𝑍 → (𝐾𝑥) = (𝐾𝑍))
32oveq2d 7447 . . . . . . 7 (𝑥 = 𝑍 → (𝐴 · (𝐾𝑥)) = (𝐴 · (𝐾𝑍)))
41, 3breq12d 5161 . . . . . 6 (𝑥 = 𝑍 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)) ↔ (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍))))
5 id 22 . . . . . . . 8 ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
65imp 406 . . . . . . 7 (((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
76adantll 714 . . . . . 6 ((((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
8 0le0 12365 . . . . . . . 8 0 ≤ 0
9 nmlnoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
10 nmlnoubi.w . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
11 nmlnoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
12 eqid 2735 . . . . . . . . . . . . . 14 (BaseSet‘𝑊) = (BaseSet‘𝑊)
13 nmlnoubi.z . . . . . . . . . . . . . 14 𝑍 = (0vec𝑈)
14 eqid 2735 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
15 nmlnoubi.7 . . . . . . . . . . . . . 14 𝐿 = (𝑈 LnOp 𝑊)
1611, 12, 13, 14, 15lno0 30785 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
179, 10, 16mp3an12 1450 . . . . . . . . . . . 12 (𝑇𝐿 → (𝑇𝑍) = (0vec𝑊))
1817fveq2d 6911 . . . . . . . . . . 11 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = (𝑀‘(0vec𝑊)))
19 nmlnoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
2014, 19nvz0 30697 . . . . . . . . . . . 12 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
2110, 20ax-mp 5 . . . . . . . . . . 11 (𝑀‘(0vec𝑊)) = 0
2218, 21eqtrdi 2791 . . . . . . . . . 10 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = 0)
2322adantr 480 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) = 0)
24 nmlnoubi.k . . . . . . . . . . . . . 14 𝐾 = (normCV𝑈)
2513, 24nvz0 30697 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝐾𝑍) = 0)
269, 25ax-mp 5 . . . . . . . . . . . 12 (𝐾𝑍) = 0
2726oveq2i 7442 . . . . . . . . . . 11 (𝐴 · (𝐾𝑍)) = (𝐴 · 0)
28 recn 11243 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2928mul01d 11458 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
3027, 29eqtrid 2787 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 · (𝐾𝑍)) = 0)
3130ad2antrl 728 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · (𝐾𝑍)) = 0)
3223, 31breq12d 5161 . . . . . . . 8 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)) ↔ 0 ≤ 0))
338, 32mpbiri 258 . . . . . . 7 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
3433adantr 480 . . . . . 6 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
354, 7, 34pm2.61ne 3025 . . . . 5 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3635ex 412 . . . 4 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
3736ralimdv 3167 . . 3 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
38373impia 1116 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3911, 12, 15lnof 30784 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
409, 10, 39mp3an12 1450 . . 3 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
41 nmlnoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
4211, 12, 24, 19, 41, 9, 10nmoub2i 30803 . . 3 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4340, 42syl3an1 1162 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4438, 43syld3an3 1408 1 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158  cle 11294  NrmCVeccnv 30613  BaseSetcba 30615  0veccn0v 30617  normCVcnmcv 30619   LnOp clno 30769   normOpOLD cnmoo 30770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-grpo 30522  df-gid 30523  df-ginv 30524  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-lno 30773  df-nmoo 30774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator