MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmlnoubi Structured version   Visualization version   GIF version

Theorem nmlnoubi 28575
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmlnoubi.1 𝑋 = (BaseSet‘𝑈)
nmlnoubi.z 𝑍 = (0vec𝑈)
nmlnoubi.k 𝐾 = (normCV𝑈)
nmlnoubi.m 𝑀 = (normCV𝑊)
nmlnoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmlnoubi.7 𝐿 = (𝑈 LnOp 𝑊)
nmlnoubi.u 𝑈 ∈ NrmCVec
nmlnoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmlnoubi ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝐿   𝑥,𝑀   𝑥,𝑇   𝑥,𝑈   𝑥,𝑊   𝑥,𝑋
Allowed substitution hints:   𝑁(𝑥)   𝑍(𝑥)

Proof of Theorem nmlnoubi
StepHypRef Expression
1 2fveq3 6677 . . . . . . 7 (𝑥 = 𝑍 → (𝑀‘(𝑇𝑥)) = (𝑀‘(𝑇𝑍)))
2 fveq2 6672 . . . . . . . 8 (𝑥 = 𝑍 → (𝐾𝑥) = (𝐾𝑍))
32oveq2d 7174 . . . . . . 7 (𝑥 = 𝑍 → (𝐴 · (𝐾𝑥)) = (𝐴 · (𝐾𝑍)))
41, 3breq12d 5081 . . . . . 6 (𝑥 = 𝑍 → ((𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)) ↔ (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍))))
5 id 22 . . . . . . . 8 ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
65imp 409 . . . . . . 7 (((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
76adantll 712 . . . . . 6 ((((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) ∧ 𝑥𝑍) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
8 0le0 11741 . . . . . . . 8 0 ≤ 0
9 nmlnoubi.u . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
10 nmlnoubi.w . . . . . . . . . . . . 13 𝑊 ∈ NrmCVec
11 nmlnoubi.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
12 eqid 2823 . . . . . . . . . . . . . 14 (BaseSet‘𝑊) = (BaseSet‘𝑊)
13 nmlnoubi.z . . . . . . . . . . . . . 14 𝑍 = (0vec𝑈)
14 eqid 2823 . . . . . . . . . . . . . 14 (0vec𝑊) = (0vec𝑊)
15 nmlnoubi.7 . . . . . . . . . . . . . 14 𝐿 = (𝑈 LnOp 𝑊)
1611, 12, 13, 14, 15lno0 28535 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → (𝑇𝑍) = (0vec𝑊))
179, 10, 16mp3an12 1447 . . . . . . . . . . . 12 (𝑇𝐿 → (𝑇𝑍) = (0vec𝑊))
1817fveq2d 6676 . . . . . . . . . . 11 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = (𝑀‘(0vec𝑊)))
19 nmlnoubi.m . . . . . . . . . . . . 13 𝑀 = (normCV𝑊)
2014, 19nvz0 28447 . . . . . . . . . . . 12 (𝑊 ∈ NrmCVec → (𝑀‘(0vec𝑊)) = 0)
2110, 20ax-mp 5 . . . . . . . . . . 11 (𝑀‘(0vec𝑊)) = 0
2218, 21syl6eq 2874 . . . . . . . . . 10 (𝑇𝐿 → (𝑀‘(𝑇𝑍)) = 0)
2322adantr 483 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) = 0)
24 nmlnoubi.k . . . . . . . . . . . . . 14 𝐾 = (normCV𝑈)
2513, 24nvz0 28447 . . . . . . . . . . . . 13 (𝑈 ∈ NrmCVec → (𝐾𝑍) = 0)
269, 25ax-mp 5 . . . . . . . . . . . 12 (𝐾𝑍) = 0
2726oveq2i 7169 . . . . . . . . . . 11 (𝐴 · (𝐾𝑍)) = (𝐴 · 0)
28 recn 10629 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2928mul01d 10841 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝐴 · 0) = 0)
3027, 29syl5eq 2870 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 · (𝐾𝑍)) = 0)
3130ad2antrl 726 . . . . . . . . 9 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · (𝐾𝑍)) = 0)
3223, 31breq12d 5081 . . . . . . . 8 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)) ↔ 0 ≤ 0))
338, 32mpbiri 260 . . . . . . 7 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
3433adantr 483 . . . . . 6 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑍)) ≤ (𝐴 · (𝐾𝑍)))
354, 7, 34pm2.61ne 3104 . . . . 5 (((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3635ex 415 . . . 4 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
3736ralimdv 3180 . . 3 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))))
38373impia 1113 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))
3911, 12, 15lnof 28534 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊))
409, 10, 39mp3an12 1447 . . 3 (𝑇𝐿𝑇:𝑋⟶(BaseSet‘𝑊))
41 nmlnoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
4211, 12, 24, 19, 41, 9, 10nmoub2i 28553 . . 3 ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4340, 42syl3an1 1159 . 2 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥))) → (𝑁𝑇) ≤ 𝐴)
4438, 43syld3an3 1405 1 ((𝑇𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥𝑋 (𝑥𝑍 → (𝑀‘(𝑇𝑥)) ≤ (𝐴 · (𝐾𝑥)))) → (𝑁𝑇) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140   class class class wbr 5068  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539   · cmul 10544  cle 10678  NrmCVeccnv 28363  BaseSetcba 28365  0veccn0v 28367  normCVcnmcv 28369   LnOp clno 28519   normOpOLD cnmoo 28520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-vc 28338  df-nv 28371  df-va 28374  df-ba 28375  df-sm 28376  df-0v 28377  df-nmcv 28379  df-lno 28523  df-nmoo 28524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator