Proof of Theorem nmlnoubi
Step | Hyp | Ref
| Expression |
1 | | 2fveq3 6779 |
. . . . . . 7
⊢ (𝑥 = 𝑍 → (𝑀‘(𝑇‘𝑥)) = (𝑀‘(𝑇‘𝑍))) |
2 | | fveq2 6774 |
. . . . . . . 8
⊢ (𝑥 = 𝑍 → (𝐾‘𝑥) = (𝐾‘𝑍)) |
3 | 2 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑥 = 𝑍 → (𝐴 · (𝐾‘𝑥)) = (𝐴 · (𝐾‘𝑍))) |
4 | 1, 3 | breq12d 5087 |
. . . . . 6
⊢ (𝑥 = 𝑍 → ((𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)) ↔ (𝑀‘(𝑇‘𝑍)) ≤ (𝐴 · (𝐾‘𝑍)))) |
5 | | id 22 |
. . . . . . . 8
⊢ ((𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) → (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) |
6 | 5 | imp 407 |
. . . . . . 7
⊢ (((𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) ∧ 𝑥 ≠ 𝑍) → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) |
7 | 6 | adantll 711 |
. . . . . 6
⊢ ((((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) ∧ 𝑥 ≠ 𝑍) → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) |
8 | | 0le0 12074 |
. . . . . . . 8
⊢ 0 ≤
0 |
9 | | nmlnoubi.u |
. . . . . . . . . . . . 13
⊢ 𝑈 ∈ NrmCVec |
10 | | nmlnoubi.w |
. . . . . . . . . . . . 13
⊢ 𝑊 ∈ NrmCVec |
11 | | nmlnoubi.1 |
. . . . . . . . . . . . . 14
⊢ 𝑋 = (BaseSet‘𝑈) |
12 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(BaseSet‘𝑊) =
(BaseSet‘𝑊) |
13 | | nmlnoubi.z |
. . . . . . . . . . . . . 14
⊢ 𝑍 = (0vec‘𝑈) |
14 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(0vec‘𝑊) = (0vec‘𝑊) |
15 | | nmlnoubi.7 |
. . . . . . . . . . . . . 14
⊢ 𝐿 = (𝑈 LnOp 𝑊) |
16 | 11, 12, 13, 14, 15 | lno0 29118 |
. . . . . . . . . . . . 13
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇‘𝑍) = (0vec‘𝑊)) |
17 | 9, 10, 16 | mp3an12 1450 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ 𝐿 → (𝑇‘𝑍) = (0vec‘𝑊)) |
18 | 17 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑇 ∈ 𝐿 → (𝑀‘(𝑇‘𝑍)) = (𝑀‘(0vec‘𝑊))) |
19 | | nmlnoubi.m |
. . . . . . . . . . . . 13
⊢ 𝑀 =
(normCV‘𝑊) |
20 | 14, 19 | nvz0 29030 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ NrmCVec → (𝑀‘(0vec‘𝑊)) = 0) |
21 | 10, 20 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝑀‘(0vec‘𝑊)) = 0 |
22 | 18, 21 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ (𝑇 ∈ 𝐿 → (𝑀‘(𝑇‘𝑍)) = 0) |
23 | 22 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇‘𝑍)) = 0) |
24 | | nmlnoubi.k |
. . . . . . . . . . . . . 14
⊢ 𝐾 =
(normCV‘𝑈) |
25 | 13, 24 | nvz0 29030 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ NrmCVec → (𝐾‘𝑍) = 0) |
26 | 9, 25 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝐾‘𝑍) = 0 |
27 | 26 | oveq2i 7286 |
. . . . . . . . . . 11
⊢ (𝐴 · (𝐾‘𝑍)) = (𝐴 · 0) |
28 | | recn 10961 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
29 | 28 | mul01d 11174 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝐴 · 0) =
0) |
30 | 27, 29 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 · (𝐾‘𝑍)) = 0) |
31 | 30 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · (𝐾‘𝑍)) = 0) |
32 | 23, 31 | breq12d 5087 |
. . . . . . . 8
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑀‘(𝑇‘𝑍)) ≤ (𝐴 · (𝐾‘𝑍)) ↔ 0 ≤ 0)) |
33 | 8, 32 | mpbiri 257 |
. . . . . . 7
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝑀‘(𝑇‘𝑍)) ≤ (𝐴 · (𝐾‘𝑍))) |
34 | 33 | adantr 481 |
. . . . . 6
⊢ (((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) → (𝑀‘(𝑇‘𝑍)) ≤ (𝐴 · (𝐾‘𝑍))) |
35 | 4, 7, 34 | pm2.61ne 3030 |
. . . . 5
⊢ (((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) |
36 | 35 | ex 413 |
. . . 4
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → ((𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) |
37 | 36 | ralimdv 3109 |
. . 3
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (∀𝑥 ∈ 𝑋 (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) → ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) |
38 | 37 | 3impia 1116 |
. 2
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) → ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) |
39 | 11, 12, 15 | lnof 29117 |
. . . 4
⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
40 | 9, 10, 39 | mp3an12 1450 |
. . 3
⊢ (𝑇 ∈ 𝐿 → 𝑇:𝑋⟶(BaseSet‘𝑊)) |
41 | | nmlnoubi.3 |
. . . 4
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
42 | 11, 12, 24, 19, 41, 9, 10 | nmoub2i 29136 |
. . 3
⊢ ((𝑇:𝑋⟶(BaseSet‘𝑊) ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) → (𝑁‘𝑇) ≤ 𝐴) |
43 | 40, 42 | syl3an1 1162 |
. 2
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥))) → (𝑁‘𝑇) ≤ 𝐴) |
44 | 38, 43 | syld3an3 1408 |
1
⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) → (𝑁‘𝑇) ≤ 𝐴) |