MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  o1res2 Structured version   Visualization version   GIF version

Theorem o1res2 15579
Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 21-May-2016.)
Hypotheses
Ref Expression
rlimres2.1 (𝜑𝐴𝐵)
o1res2.2 (𝜑 → (𝑥𝐵𝐶) ∈ 𝑂(1))
Assertion
Ref Expression
o1res2 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem o1res2
StepHypRef Expression
1 rlimres2.1 . . 3 (𝜑𝐴𝐵)
21resmptd 6027 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) = (𝑥𝐴𝐶))
3 o1res2.2 . . 3 (𝜑 → (𝑥𝐵𝐶) ∈ 𝑂(1))
4 o1res 15576 . . 3 ((𝑥𝐵𝐶) ∈ 𝑂(1) → ((𝑥𝐵𝐶) ↾ 𝐴) ∈ 𝑂(1))
53, 4syl 17 . 2 (𝜑 → ((𝑥𝐵𝐶) ↾ 𝐴) ∈ 𝑂(1))
62, 5eqeltrrd 2835 1 (𝜑 → (𝑥𝐴𝐶) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926  cmpt 5201  cres 5656  𝑂(1)co1 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-ico 13368  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-o1 15506  df-lo1 15507
This theorem is referenced by:  logno1  26597  chebbnd2  27440  chpo1ub  27443  vmadivsumb  27446  vmalogdivsum2  27501  vmalogdivsum  27502  2vmadivsumlem  27503  selbergb  27512  selberg2lem  27513  selberg2b  27515  selberg3lem1  27520  selberg3lem2  27521  selberg3  27522  selberg4lem1  27523  selberg4  27524  pntrsumo1  27528  pntrlog2bndlem2  27541  pntrlog2bndlem4  27543
  Copyright terms: Public domain W3C validator