Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > o1res2 | Structured version Visualization version GIF version |
Description: The restriction of a function is eventually bounded if the original is. (Contributed by Mario Carneiro, 21-May-2016.) |
Ref | Expression |
---|---|
rlimres2.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
o1res2.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝑂(1)) |
Ref | Expression |
---|---|
o1res2 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimres2.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 1 | resmptd 5923 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
3 | o1res2.2 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝑂(1)) | |
4 | o1res 15149 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ↦ 𝐶) ∈ 𝑂(1) → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ 𝑂(1)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ↦ 𝐶) ↾ 𝐴) ∈ 𝑂(1)) |
6 | 2, 5 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ 𝑂(1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3881 ↦ cmpt 5150 ↾ cres 5568 𝑂(1)co1 15075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-pre-sup 10832 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-pm 8532 df-en 8648 df-dom 8649 df-sdom 8650 df-sup 9083 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-3 11919 df-n0 12116 df-z 12202 df-uz 12464 df-rp 12612 df-ico 12966 df-seq 13602 df-exp 13663 df-cj 14690 df-re 14691 df-im 14692 df-sqrt 14826 df-abs 14827 df-o1 15079 df-lo1 15080 |
This theorem is referenced by: logno1 25551 chebbnd2 26385 chpo1ub 26388 vmadivsumb 26391 vmalogdivsum2 26446 vmalogdivsum 26447 2vmadivsumlem 26448 selbergb 26457 selberg2lem 26458 selberg2b 26460 selberg3lem1 26465 selberg3lem2 26466 selberg3 26467 selberg4lem1 26468 selberg4 26469 pntrsumo1 26473 pntrlog2bndlem2 26486 pntrlog2bndlem4 26488 |
Copyright terms: Public domain | W3C validator |