![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmcom | Structured version Visualization version GIF version |
Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lsmcom.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Abel) | |
2 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | subgss 19167 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
4 | 2 | subgss 19167 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
5 | lsmcom.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
6 | 2, 5 | lsmcomx 19898 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
7 | 1, 3, 4, 6 | syl3an 1160 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 SubGrpcsubg 19160 LSSumclsm 19676 Abelcabl 19823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-subg 19163 df-lsm 19678 df-cmn 19824 df-abl 19825 |
This theorem is referenced by: lsm4 19902 pgpfac1lem4 20122 pgpfaclem1 20125 lspprabs 21117 ocvpj 21760 idlsrgcmnd 33508 lcvexchlem3 38992 lcvexchlem4 38993 lcvexchlem5 38994 lsatcvatlem 39005 lsatcvat 39006 lsatcvat3 39008 l1cvat 39011 dia2dimlem5 41025 dihjatc3 41270 dihmeetlem9N 41272 dihjat 41380 lclkrlem2b 41465 |
Copyright terms: Public domain | W3C validator |