MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcom Structured version   Visualization version   GIF version

Theorem lsmcom 19440
Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmcom.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcom ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcom
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Abel)
2 eqid 2739 . . 3 (Base‘𝐺) = (Base‘𝐺)
32subgss 18737 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
42subgss 18737 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5 lsmcom.s . . 3 = (LSSum‘𝐺)
62, 5lsmcomx 19438 . 2 ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
71, 3, 4, 6syl3an 1158 1 ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  wss 3891  cfv 6430  (class class class)co 7268  Basecbs 16893  SubGrpcsubg 18730  LSSumclsm 19220  Abelcabl 19368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-subg 18733  df-lsm 19222  df-cmn 19369  df-abl 19370
This theorem is referenced by:  lsm4  19442  pgpfac1lem4  19662  pgpfaclem1  19665  lspprabs  20338  ocvpj  20905  idlsrgcmnd  31639  lcvexchlem3  37029  lcvexchlem4  37030  lcvexchlem5  37031  lsatcvatlem  37042  lsatcvat  37043  lsatcvat3  37045  l1cvat  37048  dia2dimlem5  39061  dihjatc3  39306  dihmeetlem9N  39308  dihjat  39416  lclkrlem2b  39501
  Copyright terms: Public domain W3C validator