![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmcom | Structured version Visualization version GIF version |
Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
Ref | Expression |
---|---|
lsmcom.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Abel) | |
2 | eqid 2732 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 2 | subgss 19043 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
4 | 2 | subgss 19043 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
5 | lsmcom.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
6 | 2, 5 | lsmcomx 19765 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
7 | 1, 3, 4, 6 | syl3an 1160 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 SubGrpcsubg 19036 LSSumclsm 19543 Abelcabl 19690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-subg 19039 df-lsm 19545 df-cmn 19691 df-abl 19692 |
This theorem is referenced by: lsm4 19769 pgpfac1lem4 19989 pgpfaclem1 19992 lspprabs 20850 ocvpj 21491 idlsrgcmnd 32891 lcvexchlem3 38209 lcvexchlem4 38210 lcvexchlem5 38211 lsatcvatlem 38222 lsatcvat 38223 lsatcvat3 38225 l1cvat 38228 dia2dimlem5 40242 dihjatc3 40487 dihmeetlem9N 40489 dihjat 40597 lclkrlem2b 40682 |
Copyright terms: Public domain | W3C validator |