| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmcom | Structured version Visualization version GIF version | ||
| Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmcom.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Abel) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | subgss 19066 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 4 | 2 | subgss 19066 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 5 | lsmcom.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 6 | 2, 5 | lsmcomx 19793 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| 7 | 1, 3, 4, 6 | syl3an 1160 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 SubGrpcsubg 19059 LSSumclsm 19571 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-subg 19062 df-lsm 19573 df-cmn 19719 df-abl 19720 |
| This theorem is referenced by: lsm4 19797 pgpfac1lem4 20017 pgpfaclem1 20020 lspprabs 21009 ocvpj 21633 idlsrgcmnd 33493 lcvexchlem3 39036 lcvexchlem4 39037 lcvexchlem5 39038 lsatcvatlem 39049 lsatcvat 39050 lsatcvat3 39052 l1cvat 39055 dia2dimlem5 41069 dihjatc3 41314 dihmeetlem9N 41316 dihjat 41424 lclkrlem2b 41509 |
| Copyright terms: Public domain | W3C validator |