| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmcom | Structured version Visualization version GIF version | ||
| Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.) |
| Ref | Expression |
|---|---|
| lsmcom.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmcom | ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Abel) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 2 | subgss 19025 | . 2 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 4 | 2 | subgss 19025 | . 2 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 5 | lsmcom.s | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 6 | 2, 5 | lsmcomx 19754 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| 7 | 1, 3, 4, 6 | syl3an 1160 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 ⊕ 𝑈) = (𝑈 ⊕ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 SubGrpcsubg 19018 LSSumclsm 19532 Abelcabl 19679 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-subg 19021 df-lsm 19534 df-cmn 19680 df-abl 19681 |
| This theorem is referenced by: lsm4 19758 pgpfac1lem4 19978 pgpfaclem1 19981 lspprabs 21018 ocvpj 21643 idlsrgcmnd 33471 lcvexchlem3 39034 lcvexchlem4 39035 lcvexchlem5 39036 lsatcvatlem 39047 lsatcvat 39048 lsatcvat3 39050 l1cvat 39053 dia2dimlem5 41067 dihjatc3 41312 dihmeetlem9N 41314 dihjat 41422 lclkrlem2b 41507 |
| Copyright terms: Public domain | W3C validator |