MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcom Structured version   Visualization version   GIF version

Theorem lsmcom 19891
Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 21-Jun-2014.)
Hypothesis
Ref Expression
lsmcom.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmcom ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))

Proof of Theorem lsmcom
StepHypRef Expression
1 id 22 . 2 (𝐺 ∈ Abel → 𝐺 ∈ Abel)
2 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
32subgss 19158 . 2 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
42subgss 19158 . 2 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
5 lsmcom.s . . 3 = (LSSum‘𝐺)
62, 5lsmcomx 19889 . 2 ((𝐺 ∈ Abel ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
71, 3, 4, 6syl3an 1159 1 ((𝐺 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) → (𝑇 𝑈) = (𝑈 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  SubGrpcsubg 19151  LSSumclsm 19667  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-subg 19154  df-lsm 19669  df-cmn 19815  df-abl 19816
This theorem is referenced by:  lsm4  19893  pgpfac1lem4  20113  pgpfaclem1  20116  lspprabs  21112  ocvpj  21755  idlsrgcmnd  33523  lcvexchlem3  39018  lcvexchlem4  39019  lcvexchlem5  39020  lsatcvatlem  39031  lsatcvat  39032  lsatcvat3  39034  l1cvat  39037  dia2dimlem5  41051  dihjatc3  41296  dihmeetlem9N  41298  dihjat  41406  lclkrlem2b  41491
  Copyright terms: Public domain W3C validator