MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Structured version   Visualization version   GIF version

Theorem oddvdssubg 18573
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
oddvdssubg.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
oddvdssubg ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂

Proof of Theorem oddvdssubg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3883 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵
21a1i 11 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵)
3 ablgrp 18513 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
43adantr 473 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp)
5 oddvdssubg.1 . . . . . 6 𝐵 = (Base‘𝐺)
6 eqid 2799 . . . . . 6 (0g𝐺) = (0g𝐺)
75, 6grpidcl 17766 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
84, 7syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ 𝐵)
9 torsubg.1 . . . . . . 7 𝑂 = (od‘𝐺)
109, 6od1 18289 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
114, 10syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) = 1)
12 1dvds 15335 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1312adantl 474 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1 ∥ 𝑁)
1411, 13eqbrtrd 4865 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) ∥ 𝑁)
15 fveq2 6411 . . . . . 6 (𝑥 = (0g𝐺) → (𝑂𝑥) = (𝑂‘(0g𝐺)))
1615breq1d 4853 . . . . 5 (𝑥 = (0g𝐺) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(0g𝐺)) ∥ 𝑁))
1716elrab 3556 . . . 4 ((0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ ((0g𝐺) ∈ 𝐵 ∧ (𝑂‘(0g𝐺)) ∥ 𝑁))
188, 14, 17sylanbrc 579 . . 3 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
1918ne0d 4122 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅)
20 fveq2 6411 . . . . . 6 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
2120breq1d 4853 . . . . 5 (𝑥 = 𝑦 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑦) ∥ 𝑁))
2221elrab 3556 . . . 4 (𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁))
23 fveq2 6411 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
2423breq1d 4853 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑧) ∥ 𝑁))
2524elrab 3556 . . . . . . 7 (𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁))
264adantr 473 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp)
2726adantr 473 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp)
28 simprl 788 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝑦𝐵)
2928adantr 473 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑦𝐵)
30 simprl 788 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑧𝐵)
31 eqid 2799 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
325, 31grpcl 17746 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
3327, 29, 30, 32syl3anc 1491 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
34 simplll 792 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel)
35 simpllr 794 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ)
36 eqid 2799 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
375, 36, 31mulgdi 18547 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
3834, 35, 29, 30, 37syl13anc 1492 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
39 simprr 790 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
4039adantr 473 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
415, 9, 36, 6oddvds 18279 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑁 ∈ ℤ) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4227, 29, 35, 41syl3anc 1491 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4340, 42mpbid 224 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑦) = (0g𝐺))
44 simprr 790 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑧) ∥ 𝑁)
455, 9, 36, 6oddvds 18279 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝐵𝑁 ∈ ℤ) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4627, 30, 35, 45syl3anc 1491 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4744, 46mpbid 224 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑧) = (0g𝐺))
4843, 47oveq12d 6896 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(0g𝐺)))
4927, 7syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (0g𝐺) ∈ 𝐵)
505, 31, 6grplid 17768 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5127, 49, 50syl2anc 580 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5238, 48, 513eqtrd 2837 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺))
535, 9, 36, 6oddvds 18279 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑧) ∈ 𝐵𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5427, 33, 35, 53syl3anc 1491 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5552, 54mpbird 249 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁)
56 fveq2 6411 . . . . . . . . . 10 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑂𝑥) = (𝑂‘(𝑦(+g𝐺)𝑧)))
5756breq1d 4853 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
5857elrab 3556 . . . . . . . 8 ((𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ ((𝑦(+g𝐺)𝑧) ∈ 𝐵 ∧ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
5933, 55, 58sylanbrc 579 . . . . . . 7 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6025, 59sylan2b 588 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6160ralrimiva 3147 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
62 eqid 2799 . . . . . . . 8 (invg𝐺) = (invg𝐺)
635, 62grpinvcl 17783 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6426, 28, 63syl2anc 580 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
659, 62, 5odinv 18291 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6626, 28, 65syl2anc 580 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6766, 39eqbrtrd 4865 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁)
68 fveq2 6411 . . . . . . . 8 (𝑥 = ((invg𝐺)‘𝑦) → (𝑂𝑥) = (𝑂‘((invg𝐺)‘𝑦)))
6968breq1d 4853 . . . . . . 7 (𝑥 = ((invg𝐺)‘𝑦) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
7069elrab 3556 . . . . . 6 (((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (((invg𝐺)‘𝑦) ∈ 𝐵 ∧ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
7164, 67, 70sylanbrc 579 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
7261, 71jca 508 . . . 4 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7322, 72sylan2b 588 . . 3 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7473ralrimiva 3147 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
755, 31, 62issubg2 17922 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
764, 75syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
772, 19, 74, 76mpbir3and 1443 1 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wral 3089  {crab 3093  wss 3769  c0 4115   class class class wbr 4843  cfv 6101  (class class class)co 6878  1c1 10225  cz 11666  cdvds 15319  Basecbs 16184  +gcplusg 16267  0gc0g 16415  Grpcgrp 17738  invgcminusg 17739  .gcmg 17856  SubGrpcsubg 17901  odcod 18257  Abelcabl 18509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-n0 11581  df-z 11667  df-uz 11931  df-rp 12075  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-dvds 15320  df-gcd 15552  df-ndx 16187  df-slot 16188  df-base 16190  df-sets 16191  df-ress 16192  df-plusg 16280  df-0g 16417  df-mgm 17557  df-sgrp 17599  df-mnd 17610  df-grp 17741  df-minusg 17742  df-sbg 17743  df-mulg 17857  df-subg 17904  df-od 18261  df-cmn 18510  df-abl 18511
This theorem is referenced by:  ablfacrplem  18780  ablfacrp  18781  ablfacrp2  18782  ablfac1b  18785
  Copyright terms: Public domain W3C validator