MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Structured version   Visualization version   GIF version

Theorem oddvdssubg 19633
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
oddvdssubg.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
oddvdssubg ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂

Proof of Theorem oddvdssubg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4037 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵
21a1i 11 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵)
3 fveq2 6842 . . . . 5 (𝑥 = (0g𝐺) → (𝑂𝑥) = (𝑂‘(0g𝐺)))
43breq1d 5115 . . . 4 (𝑥 = (0g𝐺) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(0g𝐺)) ∥ 𝑁))
5 ablgrp 19567 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
65adantr 481 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp)
7 oddvdssubg.1 . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2736 . . . . . 6 (0g𝐺) = (0g𝐺)
97, 8grpidcl 18778 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
106, 9syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ 𝐵)
11 torsubg.1 . . . . . . 7 𝑂 = (od‘𝐺)
1211, 8od1 19341 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
136, 12syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) = 1)
14 1dvds 16153 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1514adantl 482 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1 ∥ 𝑁)
1613, 15eqbrtrd 5127 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) ∥ 𝑁)
174, 10, 16elrabd 3647 . . 3 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
1817ne0d 4295 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅)
19 fveq2 6842 . . . . . 6 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
2019breq1d 5115 . . . . 5 (𝑥 = 𝑦 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑦) ∥ 𝑁))
2120elrab 3645 . . . 4 (𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁))
22 fveq2 6842 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
2322breq1d 5115 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑧) ∥ 𝑁))
2423elrab 3645 . . . . . . 7 (𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁))
25 fveq2 6842 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑂𝑥) = (𝑂‘(𝑦(+g𝐺)𝑧)))
2625breq1d 5115 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
276adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp)
2827adantr 481 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp)
29 simprl 769 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝑦𝐵)
3029adantr 481 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑦𝐵)
31 simprl 769 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑧𝐵)
32 eqid 2736 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
337, 32grpcl 18756 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
3428, 30, 31, 33syl3anc 1371 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
35 simplll 773 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel)
36 simpllr 774 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ)
37 eqid 2736 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
387, 37, 32mulgdi 19605 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
3935, 36, 30, 31, 38syl13anc 1372 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
40 simprr 771 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
4140adantr 481 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
427, 11, 37, 8oddvds 19329 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑁 ∈ ℤ) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4328, 30, 36, 42syl3anc 1371 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4441, 43mpbid 231 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑦) = (0g𝐺))
45 simprr 771 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑧) ∥ 𝑁)
467, 11, 37, 8oddvds 19329 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝐵𝑁 ∈ ℤ) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4728, 31, 36, 46syl3anc 1371 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4845, 47mpbid 231 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑧) = (0g𝐺))
4944, 48oveq12d 7375 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(0g𝐺)))
5028, 9syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (0g𝐺) ∈ 𝐵)
517, 32, 8grplid 18780 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5228, 50, 51syl2anc 584 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5339, 49, 523eqtrd 2780 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺))
547, 11, 37, 8oddvds 19329 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑧) ∈ 𝐵𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5528, 34, 36, 54syl3anc 1371 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5653, 55mpbird 256 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁)
5726, 34, 56elrabd 3647 . . . . . . 7 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
5824, 57sylan2b 594 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
5958ralrimiva 3143 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
60 fveq2 6842 . . . . . . 7 (𝑥 = ((invg𝐺)‘𝑦) → (𝑂𝑥) = (𝑂‘((invg𝐺)‘𝑦)))
6160breq1d 5115 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
62 eqid 2736 . . . . . . . 8 (invg𝐺) = (invg𝐺)
637, 62grpinvcl 18798 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6427, 29, 63syl2anc 584 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6511, 62, 7odinv 19343 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6627, 29, 65syl2anc 584 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6766, 40eqbrtrd 5127 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁)
6861, 64, 67elrabd 3647 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6959, 68jca 512 . . . 4 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7021, 69sylan2b 594 . . 3 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7170ralrimiva 3143 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
727, 32, 62issubg2 18943 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
736, 72syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
742, 18, 71, 73mpbir3and 1342 1 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  {crab 3407  wss 3910  c0 4282   class class class wbr 5105  cfv 6496  (class class class)co 7357  1c1 11052  cz 12499  cdvds 16136  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  .gcmg 18872  SubGrpcsubg 18922  odcod 19306  Abelcabl 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-od 19310  df-cmn 19564  df-abl 19565
This theorem is referenced by:  ablfacrplem  19844  ablfacrp  19845  ablfacrp2  19846  ablfac1b  19849
  Copyright terms: Public domain W3C validator