MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Structured version   Visualization version   GIF version

Theorem oddvdssubg 19769
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
oddvdssubg.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
oddvdssubg ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂

Proof of Theorem oddvdssubg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4039 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵
21a1i 11 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵)
3 fveq2 6840 . . . . 5 (𝑥 = (0g𝐺) → (𝑂𝑥) = (𝑂‘(0g𝐺)))
43breq1d 5112 . . . 4 (𝑥 = (0g𝐺) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(0g𝐺)) ∥ 𝑁))
5 ablgrp 19699 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
65adantr 480 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp)
7 oddvdssubg.1 . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2729 . . . . . 6 (0g𝐺) = (0g𝐺)
97, 8grpidcl 18879 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
106, 9syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ 𝐵)
11 torsubg.1 . . . . . . 7 𝑂 = (od‘𝐺)
1211, 8od1 19473 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
136, 12syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) = 1)
14 1dvds 16216 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1514adantl 481 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1 ∥ 𝑁)
1613, 15eqbrtrd 5124 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) ∥ 𝑁)
174, 10, 16elrabd 3658 . . 3 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
1817ne0d 4301 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅)
19 fveq2 6840 . . . . . 6 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
2019breq1d 5112 . . . . 5 (𝑥 = 𝑦 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑦) ∥ 𝑁))
2120elrab 3656 . . . 4 (𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁))
22 fveq2 6840 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
2322breq1d 5112 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑧) ∥ 𝑁))
2423elrab 3656 . . . . . . 7 (𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁))
25 fveq2 6840 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑂𝑥) = (𝑂‘(𝑦(+g𝐺)𝑧)))
2625breq1d 5112 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
276adantr 480 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp)
2827adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp)
29 simprl 770 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝑦𝐵)
3029adantr 480 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑦𝐵)
31 simprl 770 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑧𝐵)
32 eqid 2729 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
337, 32grpcl 18855 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
3428, 30, 31, 33syl3anc 1373 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
35 simplll 774 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel)
36 simpllr 775 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ)
37 eqid 2729 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
387, 37, 32mulgdi 19740 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
3935, 36, 30, 31, 38syl13anc 1374 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
40 simprr 772 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
4140adantr 480 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
427, 11, 37, 8oddvds 19461 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑁 ∈ ℤ) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4328, 30, 36, 42syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4441, 43mpbid 232 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑦) = (0g𝐺))
45 simprr 772 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑧) ∥ 𝑁)
467, 11, 37, 8oddvds 19461 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝐵𝑁 ∈ ℤ) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4728, 31, 36, 46syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4845, 47mpbid 232 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑧) = (0g𝐺))
4944, 48oveq12d 7387 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(0g𝐺)))
5028, 9syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (0g𝐺) ∈ 𝐵)
517, 32, 8grplid 18881 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5228, 50, 51syl2anc 584 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5339, 49, 523eqtrd 2768 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺))
547, 11, 37, 8oddvds 19461 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑧) ∈ 𝐵𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5528, 34, 36, 54syl3anc 1373 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5653, 55mpbird 257 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁)
5726, 34, 56elrabd 3658 . . . . . . 7 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
5824, 57sylan2b 594 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
5958ralrimiva 3125 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
60 fveq2 6840 . . . . . . 7 (𝑥 = ((invg𝐺)‘𝑦) → (𝑂𝑥) = (𝑂‘((invg𝐺)‘𝑦)))
6160breq1d 5112 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
62 eqid 2729 . . . . . . . 8 (invg𝐺) = (invg𝐺)
637, 62grpinvcl 18901 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6427, 29, 63syl2anc 584 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6511, 62, 7odinv 19475 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6627, 29, 65syl2anc 584 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6766, 40eqbrtrd 5124 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁)
6861, 64, 67elrabd 3658 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6959, 68jca 511 . . . 4 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7021, 69sylan2b 594 . . 3 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7170ralrimiva 3125 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
727, 32, 62issubg2 19055 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
736, 72syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
742, 18, 71, 73mpbir3and 1343 1 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  wss 3911  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  1c1 11045  cz 12505  cdvds 16198  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848  .gcmg 18981  SubGrpcsubg 19034  odcod 19438  Abelcabl 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-od 19442  df-cmn 19696  df-abl 19697
This theorem is referenced by:  ablfacrplem  19981  ablfacrp  19982  ablfacrp2  19983  ablfac1b  19986
  Copyright terms: Public domain W3C validator