MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddvdssubg Structured version   Visualization version   GIF version

Theorem oddvdssubg 18953
Description: The set of all elements whose order divides a fixed integer is a subgroup of any abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
torsubg.1 𝑂 = (od‘𝐺)
oddvdssubg.1 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
oddvdssubg ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐺   𝑥,𝑁   𝑥,𝑂

Proof of Theorem oddvdssubg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4032 . . 3 {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵
21a1i 11 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵)
3 fveq2 6643 . . . . 5 (𝑥 = (0g𝐺) → (𝑂𝑥) = (𝑂‘(0g𝐺)))
43breq1d 5049 . . . 4 (𝑥 = (0g𝐺) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(0g𝐺)) ∥ 𝑁))
5 ablgrp 18889 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
65adantr 484 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp)
7 oddvdssubg.1 . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2821 . . . . . 6 (0g𝐺) = (0g𝐺)
97, 8grpidcl 18109 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝐵)
106, 9syl 17 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ 𝐵)
11 torsubg.1 . . . . . . 7 𝑂 = (od‘𝐺)
1211, 8od1 18664 . . . . . 6 (𝐺 ∈ Grp → (𝑂‘(0g𝐺)) = 1)
136, 12syl 17 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) = 1)
14 1dvds 15603 . . . . . 6 (𝑁 ∈ ℤ → 1 ∥ 𝑁)
1514adantl 485 . . . . 5 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1 ∥ 𝑁)
1613, 15eqbrtrd 5061 . . . 4 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g𝐺)) ∥ 𝑁)
174, 10, 16elrabd 3659 . . 3 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (0g𝐺) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
1817ne0d 4274 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅)
19 fveq2 6643 . . . . . 6 (𝑥 = 𝑦 → (𝑂𝑥) = (𝑂𝑦))
2019breq1d 5049 . . . . 5 (𝑥 = 𝑦 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑦) ∥ 𝑁))
2120elrab 3657 . . . 4 (𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁))
22 fveq2 6643 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑂𝑥) = (𝑂𝑧))
2322breq1d 5049 . . . . . . . 8 (𝑥 = 𝑧 → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂𝑧) ∥ 𝑁))
2423elrab 3657 . . . . . . 7 (𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ↔ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁))
25 fveq2 6643 . . . . . . . . 9 (𝑥 = (𝑦(+g𝐺)𝑧) → (𝑂𝑥) = (𝑂‘(𝑦(+g𝐺)𝑧)))
2625breq1d 5049 . . . . . . . 8 (𝑥 = (𝑦(+g𝐺)𝑧) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁))
276adantr 484 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp)
2827adantr 484 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp)
29 simprl 770 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → 𝑦𝐵)
3029adantr 484 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑦𝐵)
31 simprl 770 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑧𝐵)
32 eqid 2821 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
337, 32grpcl 18089 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
3428, 30, 31, 33syl3anc 1368 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ 𝐵)
35 simplll 774 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel)
36 simpllr 775 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ)
37 eqid 2821 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
387, 37, 32mulgdi 18925 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦𝐵𝑧𝐵)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
3935, 36, 30, 31, 38syl13anc 1369 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)))
40 simprr 772 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
4140adantr 484 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑦) ∥ 𝑁)
427, 11, 37, 8oddvds 18653 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑁 ∈ ℤ) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4328, 30, 36, 42syl3anc 1368 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑦) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑦) = (0g𝐺)))
4441, 43mpbid 235 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑦) = (0g𝐺))
45 simprr 772 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂𝑧) ∥ 𝑁)
467, 11, 37, 8oddvds 18653 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑧𝐵𝑁 ∈ ℤ) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4728, 31, 36, 46syl3anc 1368 . . . . . . . . . . . 12 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂𝑧) ∥ 𝑁 ↔ (𝑁(.g𝐺)𝑧) = (0g𝐺)))
4845, 47mpbid 235 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)𝑧) = (0g𝐺))
4944, 48oveq12d 7148 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑁(.g𝐺)𝑦)(+g𝐺)(𝑁(.g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(0g𝐺)))
5028, 9syl 17 . . . . . . . . . . 11 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (0g𝐺) ∈ 𝐵)
517, 32, 8grplid 18111 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝐵) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5228, 50, 51syl2anc 587 . . . . . . . . . 10 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((0g𝐺)(+g𝐺)(0g𝐺)) = (0g𝐺))
5339, 49, 523eqtrd 2860 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺))
547, 11, 37, 8oddvds 18653 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ (𝑦(+g𝐺)𝑧) ∈ 𝐵𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5528, 34, 36, 54syl3anc 1368 . . . . . . . . 9 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g𝐺)(𝑦(+g𝐺)𝑧)) = (0g𝐺)))
5653, 55mpbird 260 . . . . . . . 8 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g𝐺)𝑧)) ∥ 𝑁)
5726, 34, 56elrabd 3659 . . . . . . 7 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ (𝑧𝐵 ∧ (𝑂𝑧) ∥ 𝑁)) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
5824, 57sylan2b 596 . . . . . 6 ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
5958ralrimiva 3170 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
60 fveq2 6643 . . . . . . 7 (𝑥 = ((invg𝐺)‘𝑦) → (𝑂𝑥) = (𝑂‘((invg𝐺)‘𝑦)))
6160breq1d 5049 . . . . . 6 (𝑥 = ((invg𝐺)‘𝑦) → ((𝑂𝑥) ∥ 𝑁 ↔ (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁))
62 eqid 2821 . . . . . . . 8 (invg𝐺) = (invg𝐺)
637, 62grpinvcl 18129 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6427, 29, 63syl2anc 587 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ 𝐵)
6511, 62, 7odinv 18666 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6627, 29, 65syl2anc 587 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) = (𝑂𝑦))
6766, 40eqbrtrd 5061 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (𝑂‘((invg𝐺)‘𝑦)) ∥ 𝑁)
6861, 64, 67elrabd 3659 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁})
6959, 68jca 515 . . . 4 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦𝐵 ∧ (𝑂𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7021, 69sylan2b 596 . . 3 (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
7170ralrimiva 3170 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))
727, 32, 62issubg2 18272 . . 3 (𝐺 ∈ Grp → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
736, 72syl 17 . 2 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} (𝑦(+g𝐺)𝑧) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∧ ((invg𝐺)‘𝑦) ∈ {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁}))))
742, 18, 71, 73mpbir3and 1339 1 ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥𝐵 ∣ (𝑂𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3007  wral 3126  {crab 3130  wss 3910  c0 4266   class class class wbr 5039  cfv 6328  (class class class)co 7130  1c1 10515  cz 11959  cdvds 15586  Basecbs 16461  +gcplusg 16543  0gc0g 16691  Grpcgrp 18081  invgcminusg 18082  .gcmg 18202  SubGrpcsubg 18251  odcod 18630  Abelcabl 18885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fzo 13017  df-fl 13145  df-mod 13221  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-dvds 15587  df-gcd 15821  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-ress 16469  df-plusg 16556  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-grp 18084  df-minusg 18085  df-sbg 18086  df-mulg 18203  df-subg 18254  df-od 18634  df-cmn 18886  df-abl 18887
This theorem is referenced by:  ablfacrplem  19165  ablfacrp  19166  ablfacrp2  19167  ablfac1b  19170
  Copyright terms: Public domain W3C validator