Step | Hyp | Ref
| Expression |
1 | | ssrab2 3883 |
. . 3
⊢ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 |
2 | 1 | a1i 11 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵) |
3 | | ablgrp 18513 |
. . . . . 6
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
4 | 3 | adantr 473 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 𝐺 ∈ Grp) |
5 | | oddvdssubg.1 |
. . . . . 6
⊢ 𝐵 = (Base‘𝐺) |
6 | | eqid 2799 |
. . . . . 6
⊢
(0g‘𝐺) = (0g‘𝐺) |
7 | 5, 6 | grpidcl 17766 |
. . . . 5
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝐵) |
8 | 4, 7 | syl 17 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) →
(0g‘𝐺)
∈ 𝐵) |
9 | | torsubg.1 |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
10 | 9, 6 | od1 18289 |
. . . . . 6
⊢ (𝐺 ∈ Grp → (𝑂‘(0g‘𝐺)) = 1) |
11 | 4, 10 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g‘𝐺)) = 1) |
12 | | 1dvds 15335 |
. . . . . 6
⊢ (𝑁 ∈ ℤ → 1 ∥
𝑁) |
13 | 12 | adantl 474 |
. . . . 5
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → 1
∥ 𝑁) |
14 | 11, 13 | eqbrtrd 4865 |
. . . 4
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → (𝑂‘(0g‘𝐺)) ∥ 𝑁) |
15 | | fveq2 6411 |
. . . . . 6
⊢ (𝑥 = (0g‘𝐺) → (𝑂‘𝑥) = (𝑂‘(0g‘𝐺))) |
16 | 15 | breq1d 4853 |
. . . . 5
⊢ (𝑥 = (0g‘𝐺) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘(0g‘𝐺)) ∥ 𝑁)) |
17 | 16 | elrab 3556 |
. . . 4
⊢
((0g‘𝐺) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ ((0g‘𝐺) ∈ 𝐵 ∧ (𝑂‘(0g‘𝐺)) ∥ 𝑁)) |
18 | 8, 14, 17 | sylanbrc 579 |
. . 3
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) →
(0g‘𝐺)
∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
19 | 18 | ne0d 4122 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅) |
20 | | fveq2 6411 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑂‘𝑥) = (𝑂‘𝑦)) |
21 | 20 | breq1d 4853 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘𝑦) ∥ 𝑁)) |
22 | 21 | elrab 3556 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) |
23 | | fveq2 6411 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑂‘𝑥) = (𝑂‘𝑧)) |
24 | 23 | breq1d 4853 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘𝑧) ∥ 𝑁)) |
25 | 24 | elrab 3556 |
. . . . . . 7
⊢ (𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) |
26 | 4 | adantr 473 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → 𝐺 ∈ Grp) |
27 | 26 | adantr 473 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝐺 ∈ Grp) |
28 | | simprl 788 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → 𝑦 ∈ 𝐵) |
29 | 28 | adantr 473 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝑦 ∈ 𝐵) |
30 | | simprl 788 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝑧 ∈ 𝐵) |
31 | | eqid 2799 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
32 | 5, 31 | grpcl 17746 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
33 | 27, 29, 30, 32 | syl3anc 1491 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑦(+g‘𝐺)𝑧) ∈ 𝐵) |
34 | | simplll 792 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝐺 ∈ Abel) |
35 | | simpllr 794 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → 𝑁 ∈ ℤ) |
36 | | eqid 2799 |
. . . . . . . . . . . 12
⊢
(.g‘𝐺) = (.g‘𝐺) |
37 | 5, 36, 31 | mulgdi 18547 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ (𝑁 ∈ ℤ ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑁(.g‘𝐺)𝑦)(+g‘𝐺)(𝑁(.g‘𝐺)𝑧))) |
38 | 34, 35, 29, 30, 37 | syl13anc 1492 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = ((𝑁(.g‘𝐺)𝑦)(+g‘𝐺)(𝑁(.g‘𝐺)𝑧))) |
39 | | simprr 790 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (𝑂‘𝑦) ∥ 𝑁) |
40 | 39 | adantr 473 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑂‘𝑦) ∥ 𝑁) |
41 | 5, 9, 36, 6 | oddvds 18279 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑦) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑦) = (0g‘𝐺))) |
42 | 27, 29, 35, 41 | syl3anc 1491 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑂‘𝑦) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑦) = (0g‘𝐺))) |
43 | 40, 42 | mpbid 224 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)𝑦) = (0g‘𝐺)) |
44 | | simprr 790 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑂‘𝑧) ∥ 𝑁) |
45 | 5, 9, 36, 6 | oddvds 18279 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘𝑧) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑧) = (0g‘𝐺))) |
46 | 27, 30, 35, 45 | syl3anc 1491 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑂‘𝑧) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)𝑧) = (0g‘𝐺))) |
47 | 44, 46 | mpbid 224 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)𝑧) = (0g‘𝐺)) |
48 | 43, 47 | oveq12d 6896 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑁(.g‘𝐺)𝑦)(+g‘𝐺)(𝑁(.g‘𝐺)𝑧)) = ((0g‘𝐺)(+g‘𝐺)(0g‘𝐺))) |
49 | 27, 7 | syl 17 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (0g‘𝐺) ∈ 𝐵) |
50 | 5, 31, 6 | grplid 17768 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧
(0g‘𝐺)
∈ 𝐵) →
((0g‘𝐺)(+g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
51 | 27, 49, 50 | syl2anc 580 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((0g‘𝐺)(+g‘𝐺)(0g‘𝐺)) = (0g‘𝐺)) |
52 | 38, 48, 51 | 3eqtrd 2837 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (0g‘𝐺)) |
53 | 5, 9, 36, 6 | oddvds 18279 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ (𝑦(+g‘𝐺)𝑧) ∈ 𝐵 ∧ 𝑁 ∈ ℤ) → ((𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (0g‘𝐺))) |
54 | 27, 33, 35, 53 | syl3anc 1491 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → ((𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁 ↔ (𝑁(.g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (0g‘𝐺))) |
55 | 52, 54 | mpbird 249 |
. . . . . . . 8
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁) |
56 | | fveq2 6411 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → (𝑂‘𝑥) = (𝑂‘(𝑦(+g‘𝐺)𝑧))) |
57 | 56 | breq1d 4853 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦(+g‘𝐺)𝑧) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁)) |
58 | 57 | elrab 3556 |
. . . . . . . 8
⊢ ((𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ ((𝑦(+g‘𝐺)𝑧) ∈ 𝐵 ∧ (𝑂‘(𝑦(+g‘𝐺)𝑧)) ∥ 𝑁)) |
59 | 33, 55, 58 | sylanbrc 579 |
. . . . . . 7
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ (𝑧 ∈ 𝐵 ∧ (𝑂‘𝑧) ∥ 𝑁)) → (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
60 | 25, 59 | sylan2b 588 |
. . . . . 6
⊢ ((((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) ∧ 𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) → (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
61 | 60 | ralrimiva 3147 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → ∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
62 | | eqid 2799 |
. . . . . . . 8
⊢
(invg‘𝐺) = (invg‘𝐺) |
63 | 5, 62 | grpinvcl 17783 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
64 | 26, 28, 63 | syl2anc 580 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → ((invg‘𝐺)‘𝑦) ∈ 𝐵) |
65 | 9, 62, 5 | odinv 18291 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵) → (𝑂‘((invg‘𝐺)‘𝑦)) = (𝑂‘𝑦)) |
66 | 26, 28, 65 | syl2anc 580 |
. . . . . . 7
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (𝑂‘((invg‘𝐺)‘𝑦)) = (𝑂‘𝑦)) |
67 | 66, 39 | eqbrtrd 4865 |
. . . . . 6
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (𝑂‘((invg‘𝐺)‘𝑦)) ∥ 𝑁) |
68 | | fveq2 6411 |
. . . . . . . 8
⊢ (𝑥 = ((invg‘𝐺)‘𝑦) → (𝑂‘𝑥) = (𝑂‘((invg‘𝐺)‘𝑦))) |
69 | 68 | breq1d 4853 |
. . . . . . 7
⊢ (𝑥 = ((invg‘𝐺)‘𝑦) → ((𝑂‘𝑥) ∥ 𝑁 ↔ (𝑂‘((invg‘𝐺)‘𝑦)) ∥ 𝑁)) |
70 | 69 | elrab 3556 |
. . . . . 6
⊢
(((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ↔ (((invg‘𝐺)‘𝑦) ∈ 𝐵 ∧ (𝑂‘((invg‘𝐺)‘𝑦)) ∥ 𝑁)) |
71 | 64, 67, 70 | sylanbrc 579 |
. . . . 5
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) |
72 | 61, 71 | jca 508 |
. . . 4
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ 𝐵 ∧ (𝑂‘𝑦) ∥ 𝑁)) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})) |
73 | 22, 72 | sylan2b 588 |
. . 3
⊢ (((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) → (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})) |
74 | 73 | ralrimiva 3147 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) →
∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})) |
75 | 5, 31, 62 | issubg2 17922 |
. . 3
⊢ (𝐺 ∈ Grp → ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})))) |
76 | 4, 75 | syl 17 |
. 2
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺) ↔ ({𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ⊆ 𝐵 ∧ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ≠ ∅ ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (∀𝑧 ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} (𝑦(+g‘𝐺)𝑧) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∧ ((invg‘𝐺)‘𝑦) ∈ {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁})))) |
77 | 2, 19, 74, 76 | mpbir3and 1443 |
1
⊢ ((𝐺 ∈ Abel ∧ 𝑁 ∈ ℤ) → {𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁} ∈ (SubGrp‘𝐺)) |