MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspf Structured version   Visualization version   GIF version

Theorem lspf 20905
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspf (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)

Proof of Theorem lspf
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspval.v . . 3 𝑉 = (Base‘𝑊)
2 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 20904 . 2 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑝𝑆𝑠𝑝}))
5 simpl 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → 𝑊 ∈ LMod)
6 ssrab2 4030 . . . 4 {𝑝𝑆𝑠𝑝} ⊆ 𝑆
76a1i 11 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ⊆ 𝑆)
81, 2lss1 20869 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
9 elpwi 4557 . . . . 5 (𝑠 ∈ 𝒫 𝑉𝑠𝑉)
10 sseq2 3961 . . . . . 6 (𝑝 = 𝑉 → (𝑠𝑝𝑠𝑉))
1110rspcev 3577 . . . . 5 ((𝑉𝑆𝑠𝑉) → ∃𝑝𝑆 𝑠𝑝)
128, 9, 11syl2an 596 . . . 4 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∃𝑝𝑆 𝑠𝑝)
13 rabn0 4339 . . . 4 ({𝑝𝑆𝑠𝑝} ≠ ∅ ↔ ∃𝑝𝑆 𝑠𝑝)
1412, 13sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ≠ ∅)
152lssintcl 20895 . . 3 ((𝑊 ∈ LMod ∧ {𝑝𝑆𝑠𝑝} ⊆ 𝑆 ∧ {𝑝𝑆𝑠𝑝} ≠ ∅) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
165, 7, 14, 15syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
174, 16fmpt3d 7049 1 (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  wss 3902  c0 4283  𝒫 cpw 4550   cint 4897  wf 6477  cfv 6481  Basecbs 17117  LModclmod 20791  LSubSpclss 20862  LSpanclspn 20902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20793  df-lss 20863  df-lsp 20903
This theorem is referenced by:  lspcl  20907  exsslsb  33604  islmodfg  43101
  Copyright terms: Public domain W3C validator