MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspf Structured version   Visualization version   GIF version

Theorem lspf 20990
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspf (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)

Proof of Theorem lspf
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspval.v . . 3 𝑉 = (Base‘𝑊)
2 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 20989 . 2 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑝𝑆𝑠𝑝}))
5 simpl 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → 𝑊 ∈ LMod)
6 ssrab2 4090 . . . 4 {𝑝𝑆𝑠𝑝} ⊆ 𝑆
76a1i 11 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ⊆ 𝑆)
81, 2lss1 20954 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
9 elpwi 4612 . . . . 5 (𝑠 ∈ 𝒫 𝑉𝑠𝑉)
10 sseq2 4022 . . . . . 6 (𝑝 = 𝑉 → (𝑠𝑝𝑠𝑉))
1110rspcev 3622 . . . . 5 ((𝑉𝑆𝑠𝑉) → ∃𝑝𝑆 𝑠𝑝)
128, 9, 11syl2an 596 . . . 4 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∃𝑝𝑆 𝑠𝑝)
13 rabn0 4395 . . . 4 ({𝑝𝑆𝑠𝑝} ≠ ∅ ↔ ∃𝑝𝑆 𝑠𝑝)
1412, 13sylibr 234 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ≠ ∅)
152lssintcl 20980 . . 3 ((𝑊 ∈ LMod ∧ {𝑝𝑆𝑠𝑝} ⊆ 𝑆 ∧ {𝑝𝑆𝑠𝑝} ≠ ∅) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
165, 7, 14, 15syl3anc 1370 . 2 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
174, 16fmpt3d 7136 1 (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  wss 3963  c0 4339  𝒫 cpw 4605   cint 4951  wf 6559  cfv 6563  Basecbs 17245  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lss 20948  df-lsp 20988
This theorem is referenced by:  lspcl  20992  islmodfg  43058
  Copyright terms: Public domain W3C validator