MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspf Structured version   Visualization version   GIF version

Theorem lspf 20953
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.)
Hypotheses
Ref Expression
lspval.v 𝑉 = (Base‘𝑊)
lspval.s 𝑆 = (LSubSp‘𝑊)
lspval.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspf (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)

Proof of Theorem lspf
Dummy variables 𝑠 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspval.v . . 3 𝑉 = (Base‘𝑊)
2 lspval.s . . 3 𝑆 = (LSubSp‘𝑊)
3 lspval.n . . 3 𝑁 = (LSpan‘𝑊)
41, 2, 3lspfval 20952 . 2 (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 {𝑝𝑆𝑠𝑝}))
5 simpl 481 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → 𝑊 ∈ LMod)
6 ssrab2 4076 . . . 4 {𝑝𝑆𝑠𝑝} ⊆ 𝑆
76a1i 11 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ⊆ 𝑆)
81, 2lss1 20917 . . . . 5 (𝑊 ∈ LMod → 𝑉𝑆)
9 elpwi 4614 . . . . 5 (𝑠 ∈ 𝒫 𝑉𝑠𝑉)
10 sseq2 4006 . . . . . 6 (𝑝 = 𝑉 → (𝑠𝑝𝑠𝑉))
1110rspcev 3608 . . . . 5 ((𝑉𝑆𝑠𝑉) → ∃𝑝𝑆 𝑠𝑝)
128, 9, 11syl2an 594 . . . 4 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∃𝑝𝑆 𝑠𝑝)
13 rabn0 4390 . . . 4 ({𝑝𝑆𝑠𝑝} ≠ ∅ ↔ ∃𝑝𝑆 𝑠𝑝)
1412, 13sylibr 233 . . 3 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ≠ ∅)
152lssintcl 20943 . . 3 ((𝑊 ∈ LMod ∧ {𝑝𝑆𝑠𝑝} ⊆ 𝑆 ∧ {𝑝𝑆𝑠𝑝} ≠ ∅) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
165, 7, 14, 15syl3anc 1368 . 2 ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝𝑆𝑠𝑝} ∈ 𝑆)
174, 16fmpt3d 7132 1 (𝑊 ∈ LMod → 𝑁:𝒫 𝑉𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  wne 2930  wrex 3060  {crab 3419  wss 3947  c0 4325  𝒫 cpw 4607   cint 4956  wf 6552  cfv 6556  Basecbs 17215  LModclmod 20838  LSubSpclss 20910  LSpanclspn 20950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5292  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-plusg 17281  df-0g 17458  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-grp 18933  df-minusg 18934  df-sbg 18935  df-mgp 20120  df-ur 20167  df-ring 20220  df-lmod 20840  df-lss 20911  df-lsp 20951
This theorem is referenced by:  lspcl  20955  islmodfg  42748
  Copyright terms: Public domain W3C validator