![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspf | Structured version Visualization version GIF version |
Description: The span function on a left module maps subsets to subspaces. (Contributed by Stefan O'Rear, 12-Dec-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspf | ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 𝑉⟶𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
3 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 1, 2, 3 | lspfval 20952 | . 2 ⊢ (𝑊 ∈ LMod → 𝑁 = (𝑠 ∈ 𝒫 𝑉 ↦ ∩ {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝})) |
5 | simpl 481 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → 𝑊 ∈ LMod) | |
6 | ssrab2 4076 | . . . 4 ⊢ {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ⊆ 𝑆 | |
7 | 6 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ⊆ 𝑆) |
8 | 1, 2 | lss1 20917 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑉 ∈ 𝑆) |
9 | elpwi 4614 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝑉 → 𝑠 ⊆ 𝑉) | |
10 | sseq2 4006 | . . . . . 6 ⊢ (𝑝 = 𝑉 → (𝑠 ⊆ 𝑝 ↔ 𝑠 ⊆ 𝑉)) | |
11 | 10 | rspcev 3608 | . . . . 5 ⊢ ((𝑉 ∈ 𝑆 ∧ 𝑠 ⊆ 𝑉) → ∃𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝) |
12 | 8, 9, 11 | syl2an 594 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∃𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝) |
13 | rabn0 4390 | . . . 4 ⊢ ({𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ≠ ∅ ↔ ∃𝑝 ∈ 𝑆 𝑠 ⊆ 𝑝) | |
14 | 12, 13 | sylibr 233 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ≠ ∅) |
15 | 2 | lssintcl 20943 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ⊆ 𝑆 ∧ {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ≠ ∅) → ∩ {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ∈ 𝑆) |
16 | 5, 7, 14, 15 | syl3anc 1368 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑠 ∈ 𝒫 𝑉) → ∩ {𝑝 ∈ 𝑆 ∣ 𝑠 ⊆ 𝑝} ∈ 𝑆) |
17 | 4, 16 | fmpt3d 7132 | 1 ⊢ (𝑊 ∈ LMod → 𝑁:𝒫 𝑉⟶𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 {crab 3419 ⊆ wss 3947 ∅c0 4325 𝒫 cpw 4607 ∩ cint 4956 ⟶wf 6552 ‘cfv 6556 Basecbs 17215 LModclmod 20838 LSubSpclss 20910 LSpanclspn 20950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-nn 12267 df-2 12329 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-plusg 17281 df-0g 17458 df-mgm 18635 df-sgrp 18714 df-mnd 18730 df-grp 18933 df-minusg 18934 df-sbg 18935 df-mgp 20120 df-ur 20167 df-ring 20220 df-lmod 20840 df-lss 20911 df-lsp 20951 |
This theorem is referenced by: lspcl 20955 islmodfg 42748 |
Copyright terms: Public domain | W3C validator |