MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem2 Structured version   Visualization version   GIF version

Theorem lsppratlem2 19632
Description: Lemma for lspprat 19637. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem2.x1 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
lsppratlem2.y1 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
Assertion
Ref Expression
lsppratlem2 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)

Proof of Theorem lsppratlem2
StepHypRef Expression
1 lspprat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lspprat.n . . 3 𝑁 = (LSpan‘𝑊)
3 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
4 lveclmod 19590 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ LMod)
6 lsppratlem1.x2 . . . . . . 7 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
76eldifad 3837 . . . . . 6 (𝜑𝑥𝑈)
8 lsppratlem1.y2 . . . . . . 7 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
98eldifad 3837 . . . . . 6 (𝜑𝑦𝑈)
107, 9prssd 4623 . . . . 5 (𝜑 → {𝑥, 𝑦} ⊆ 𝑈)
11 lspprat.u . . . . . 6 (𝜑𝑈𝑆)
12 lspprat.v . . . . . . 7 𝑉 = (Base‘𝑊)
1312, 1lssss 19420 . . . . . 6 (𝑈𝑆𝑈𝑉)
1411, 13syl 17 . . . . 5 (𝜑𝑈𝑉)
1510, 14sstrd 3864 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
1612, 1, 2lspcl 19460 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
175, 15, 16syl2anc 576 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
18 lsppratlem2.x1 . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
19 lsppratlem2.y1 . . 3 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
201, 2, 5, 17, 18, 19lspprss 19476 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
211, 2, 5, 11, 7, 9lspprss 19476 . 2 (𝜑 → (𝑁‘{𝑥, 𝑦}) ⊆ 𝑈)
2220, 21sstrd 3864 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wcel 2048  cdif 3822  wss 3825  wpss 3826  {csn 4435  {cpr 4437  cfv 6182  Basecbs 16329  0gc0g 16559  LModclmod 19346  LSubSpclss 19415  LSpanclspn 19455  LVecclvec 19586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-plusg 16424  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885  df-sbg 17886  df-mgp 18953  df-ur 18965  df-ring 19012  df-lmod 19348  df-lss 19416  df-lsp 19456  df-lvec 19587
This theorem is referenced by:  lsppratlem5  19635
  Copyright terms: Public domain W3C validator