| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsppratlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for lspprat 21094. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.) |
| Ref | Expression |
|---|---|
| lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
| lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
| lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
| lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
| lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
| lsppratlem2.x1 | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) |
| lsppratlem2.y1 | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) |
| Ref | Expression |
|---|---|
| lsppratlem2 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspprat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | lspprat.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 3 | lspprat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 4 | lveclmod 21044 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 6 | lsppratlem1.x2 | . . . . . . 7 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
| 7 | 6 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝑈) |
| 8 | lsppratlem1.y2 | . . . . . . 7 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
| 9 | 8 | eldifad 3910 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ 𝑈) |
| 10 | 7, 9 | prssd 4775 | . . . . 5 ⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑈) |
| 11 | lspprat.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
| 12 | lspprat.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | 12, 1 | lssss 20873 | . . . . . 6 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
| 14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
| 15 | 10, 14 | sstrd 3941 | . . . 4 ⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) |
| 16 | 12, 1, 2 | lspcl 20913 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
| 17 | 5, 15, 16 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
| 18 | lsppratlem2.x1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
| 19 | lsppratlem2.y1 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
| 20 | 1, 2, 5, 17, 18, 19 | lspprss 20929 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦})) |
| 21 | 1, 2, 5, 11, 7, 9 | lspprss 20929 | . 2 ⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ⊆ 𝑈) |
| 22 | 20, 21 | sstrd 3941 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 ⊆ wss 3898 ⊊ wpss 3899 {csn 4577 {cpr 4579 ‘cfv 6488 Basecbs 17124 0gc0g 17347 LModclmod 20797 LSubSpclss 20868 LSpanclspn 20908 LVecclvec 21040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mgp 20063 df-ur 20104 df-ring 20157 df-lmod 20799 df-lss 20869 df-lsp 20909 df-lvec 21041 |
| This theorem is referenced by: lsppratlem5 21092 |
| Copyright terms: Public domain | W3C validator |