MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppratlem2 Structured version   Visualization version   GIF version

Theorem lsppratlem2 20710
Description: Lemma for lspprat 20715. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
lspprat.v 𝑉 = (Base‘𝑊)
lspprat.s 𝑆 = (LSubSp‘𝑊)
lspprat.n 𝑁 = (LSpan‘𝑊)
lspprat.w (𝜑𝑊 ∈ LVec)
lspprat.u (𝜑𝑈𝑆)
lspprat.x (𝜑𝑋𝑉)
lspprat.y (𝜑𝑌𝑉)
lspprat.p (𝜑𝑈 ⊊ (𝑁‘{𝑋, 𝑌}))
lsppratlem1.o 0 = (0g𝑊)
lsppratlem1.x2 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
lsppratlem1.y2 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
lsppratlem2.x1 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
lsppratlem2.y1 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
Assertion
Ref Expression
lsppratlem2 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)

Proof of Theorem lsppratlem2
StepHypRef Expression
1 lspprat.s . . 3 𝑆 = (LSubSp‘𝑊)
2 lspprat.n . . 3 𝑁 = (LSpan‘𝑊)
3 lspprat.w . . . 4 (𝜑𝑊 ∈ LVec)
4 lveclmod 20666 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
53, 4syl 17 . . 3 (𝜑𝑊 ∈ LMod)
6 lsppratlem1.x2 . . . . . . 7 (𝜑𝑥 ∈ (𝑈 ∖ { 0 }))
76eldifad 3956 . . . . . 6 (𝜑𝑥𝑈)
8 lsppratlem1.y2 . . . . . . 7 (𝜑𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥})))
98eldifad 3956 . . . . . 6 (𝜑𝑦𝑈)
107, 9prssd 4818 . . . . 5 (𝜑 → {𝑥, 𝑦} ⊆ 𝑈)
11 lspprat.u . . . . . 6 (𝜑𝑈𝑆)
12 lspprat.v . . . . . . 7 𝑉 = (Base‘𝑊)
1312, 1lssss 20496 . . . . . 6 (𝑈𝑆𝑈𝑉)
1411, 13syl 17 . . . . 5 (𝜑𝑈𝑉)
1510, 14sstrd 3988 . . . 4 (𝜑 → {𝑥, 𝑦} ⊆ 𝑉)
1612, 1, 2lspcl 20536 . . . 4 ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
175, 15, 16syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆)
18 lsppratlem2.x1 . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑥, 𝑦}))
19 lsppratlem2.y1 . . 3 (𝜑𝑌 ∈ (𝑁‘{𝑥, 𝑦}))
201, 2, 5, 17, 18, 19lspprss 20552 . 2 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦}))
211, 2, 5, 11, 7, 9lspprss 20552 . 2 (𝜑 → (𝑁‘{𝑥, 𝑦}) ⊆ 𝑈)
2220, 21sstrd 3988 1 (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cdif 3941  wss 3944  wpss 3945  {csn 4622  {cpr 4624  cfv 6532  Basecbs 17126  0gc0g 17367  LModclmod 20420  LSubSpclss 20491  LSpanclspn 20531  LVecclvec 20662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-plusg 17192  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mgp 19947  df-ur 19964  df-ring 20016  df-lmod 20422  df-lss 20492  df-lsp 20532  df-lvec 20663
This theorem is referenced by:  lsppratlem5  20713
  Copyright terms: Public domain W3C validator