![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsppratlem2 | Structured version Visualization version GIF version |
Description: Lemma for lspprat 19637. Show that if 𝑋 and 𝑌 are both in (𝑁‘{𝑥, 𝑦}) (which will be our goal for each of the two cases above), then (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈, contradicting the hypothesis for 𝑈. (Contributed by NM, 29-Aug-2014.) (Revised by Mario Carneiro, 5-Sep-2014.) |
Ref | Expression |
---|---|
lspprat.v | ⊢ 𝑉 = (Base‘𝑊) |
lspprat.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspprat.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspprat.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspprat.u | ⊢ (𝜑 → 𝑈 ∈ 𝑆) |
lspprat.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspprat.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspprat.p | ⊢ (𝜑 → 𝑈 ⊊ (𝑁‘{𝑋, 𝑌})) |
lsppratlem1.o | ⊢ 0 = (0g‘𝑊) |
lsppratlem1.x2 | ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) |
lsppratlem1.y2 | ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) |
lsppratlem2.x1 | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) |
lsppratlem2.y1 | ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) |
Ref | Expression |
---|---|
lsppratlem2 | ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | lspprat.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | lspprat.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | lveclmod 19590 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) |
6 | lsppratlem1.x2 | . . . . . . 7 ⊢ (𝜑 → 𝑥 ∈ (𝑈 ∖ { 0 })) | |
7 | 6 | eldifad 3837 | . . . . . 6 ⊢ (𝜑 → 𝑥 ∈ 𝑈) |
8 | lsppratlem1.y2 | . . . . . . 7 ⊢ (𝜑 → 𝑦 ∈ (𝑈 ∖ (𝑁‘{𝑥}))) | |
9 | 8 | eldifad 3837 | . . . . . 6 ⊢ (𝜑 → 𝑦 ∈ 𝑈) |
10 | 7, 9 | prssd 4623 | . . . . 5 ⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑈) |
11 | lspprat.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝑆) | |
12 | lspprat.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
13 | 12, 1 | lssss 19420 | . . . . . 6 ⊢ (𝑈 ∈ 𝑆 → 𝑈 ⊆ 𝑉) |
14 | 11, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
15 | 10, 14 | sstrd 3864 | . . . 4 ⊢ (𝜑 → {𝑥, 𝑦} ⊆ 𝑉) |
16 | 12, 1, 2 | lspcl 19460 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ {𝑥, 𝑦} ⊆ 𝑉) → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
17 | 5, 15, 16 | syl2anc 576 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ∈ 𝑆) |
18 | lsppratlem2.x1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑥, 𝑦})) | |
19 | lsppratlem2.y1 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝑁‘{𝑥, 𝑦})) | |
20 | 1, 2, 5, 17, 18, 19 | lspprss 19476 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝑁‘{𝑥, 𝑦})) |
21 | 1, 2, 5, 11, 7, 9 | lspprss 19476 | . 2 ⊢ (𝜑 → (𝑁‘{𝑥, 𝑦}) ⊆ 𝑈) |
22 | 20, 21 | sstrd 3864 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2048 ∖ cdif 3822 ⊆ wss 3825 ⊊ wpss 3826 {csn 4435 {cpr 4437 ‘cfv 6182 Basecbs 16329 0gc0g 16559 LModclmod 19346 LSubSpclss 19415 LSpanclspn 19455 LVecclvec 19586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-plusg 16424 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-grp 17884 df-minusg 17885 df-sbg 17886 df-mgp 18953 df-ur 18965 df-ring 19012 df-lmod 19348 df-lss 19416 df-lsp 19456 df-lvec 19587 |
This theorem is referenced by: lsppratlem5 19635 |
Copyright terms: Public domain | W3C validator |