MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnid Structured version   Visualization version   GIF version

Theorem lspsnid 20970
Description: A vector belongs to the span of its singleton. (spansnid 31496 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v 𝑉 = (Base‘𝑊)
lspsnid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 4817 . . 3 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
2 lspsnid.v . . . 4 𝑉 = (Base‘𝑊)
3 lspsnid.n . . . 4 𝑁 = (LSpan‘𝑊)
42, 3lspssid 20962 . . 3 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
51, 4sylan2 591 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
6 snssg 4792 . . 3 (𝑋𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
76adantl 480 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
85, 7mpbird 256 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wss 3947  {csn 4633  cfv 6554  Basecbs 17213  LModclmod 20836  LSpanclspn 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-0g 17456  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-grp 18931  df-lmod 20838  df-lss 20909  df-lsp 20949
This theorem is referenced by:  ellspsn6  20971  lssats2  20977  ellspsni  20978  lspsn  20979  lspsneq0  20989  lsmelval2  21063  lspprabs  21073  lspabs3  21102  ellspsn4  21105  lspdisjb  21107  lspfixed  21109  lindsadd  37314  lshpnelb  38682  lsateln0  38693  lssats  38710  dia1dimid  40762  dochnel  41092  dihjat1lem  41127  dochsnkr2cl  41173  lcfrvalsnN  41240  lcfrlem15  41256  mapdpglem2  41372  mapdpglem9  41379  mapdpglem12  41382  mapdpglem14  41384  mapdindp0  41418  mapdindp3  41421  hdmap11lem2  41541  hdmaprnlem3N  41549  hdmaprnlem7N  41554  hdmaprnlem8N  41555  hdmaprnlem3eN  41557  hdmaplkr  41612
  Copyright terms: Public domain W3C validator