MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnid Structured version   Visualization version   GIF version

Theorem lspsnid 20899
Description: A vector belongs to the span of its singleton. (spansnid 31492 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v 𝑉 = (Base‘𝑊)
lspsnid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 4772 . . 3 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
2 lspsnid.v . . . 4 𝑉 = (Base‘𝑊)
3 lspsnid.n . . . 4 𝑁 = (LSpan‘𝑊)
42, 3lspssid 20891 . . 3 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
51, 4sylan2 593 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
6 snssg 4747 . . 3 (𝑋𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
76adantl 481 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
85, 7mpbird 257 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914  {csn 4589  cfv 6511  Basecbs 17179  LModclmod 20766  LSpanclspn 20877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-lmod 20768  df-lss 20838  df-lsp 20878
This theorem is referenced by:  ellspsn6  20900  lssats2  20906  ellspsni  20907  lspsn  20908  lspsneq0  20918  lsmelval2  20992  lspprabs  21002  lspabs3  21031  ellspsn4  21034  lspdisjb  21036  lspfixed  21038  lindsadd  37607  lshpnelb  38977  lsateln0  38988  lssats  39005  dia1dimid  41057  dochnel  41387  dihjat1lem  41422  dochsnkr2cl  41468  lcfrvalsnN  41535  lcfrlem15  41551  mapdpglem2  41667  mapdpglem9  41674  mapdpglem12  41677  mapdpglem14  41679  mapdindp0  41713  mapdindp3  41716  hdmap11lem2  41836  hdmaprnlem3N  41844  hdmaprnlem7N  41849  hdmaprnlem8N  41850  hdmaprnlem3eN  41852  hdmaplkr  41907
  Copyright terms: Public domain W3C validator