MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnid Structured version   Visualization version   GIF version

Theorem lspsnid 20921
Description: A vector belongs to the span of its singleton. (spansnid 31535 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v 𝑉 = (Base‘𝑊)
lspsnid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 4755 . . 3 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
2 lspsnid.v . . . 4 𝑉 = (Base‘𝑊)
3 lspsnid.n . . . 4 𝑁 = (LSpan‘𝑊)
42, 3lspssid 20913 . . 3 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
51, 4sylan2 593 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
6 snssg 4731 . . 3 (𝑋𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
76adantl 481 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
85, 7mpbird 257 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  {csn 4571  cfv 6476  Basecbs 17115  LModclmod 20788  LSpanclspn 20899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-lmod 20790  df-lss 20860  df-lsp 20900
This theorem is referenced by:  ellspsn6  20922  lssats2  20928  ellspsni  20929  lspsn  20930  lspsneq0  20940  lsmelval2  21014  lspprabs  21024  lspabs3  21053  ellspsn4  21056  lspdisjb  21058  lspfixed  21060  lindsadd  37653  lshpnelb  39023  lsateln0  39034  lssats  39051  dia1dimid  41102  dochnel  41432  dihjat1lem  41467  dochsnkr2cl  41513  lcfrvalsnN  41580  lcfrlem15  41596  mapdpglem2  41712  mapdpglem9  41719  mapdpglem12  41722  mapdpglem14  41724  mapdindp0  41758  mapdindp3  41761  hdmap11lem2  41881  hdmaprnlem3N  41889  hdmaprnlem7N  41894  hdmaprnlem8N  41895  hdmaprnlem3eN  41897  hdmaplkr  41952
  Copyright terms: Public domain W3C validator