Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnid | Structured version Visualization version GIF version |
Description: A vector belongs to the span of its singleton. (spansnid 29866 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsnid.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnid.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsnid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4743 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
2 | lspsnid.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspsnid.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 2, 3 | lspssid 20191 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
5 | 1, 4 | sylan2 592 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
6 | snssg 4720 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋}))) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋}))) |
8 | 5, 7 | mpbird 256 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3888 {csn 4563 ‘cfv 6423 Basecbs 16856 LModclmod 20067 LSpanclspn 20177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5485 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-0g 17096 df-mgm 18270 df-sgrp 18319 df-mnd 18330 df-grp 18524 df-lmod 20069 df-lss 20138 df-lsp 20178 |
This theorem is referenced by: lspsnel6 20200 lssats2 20206 lspsneli 20207 lspsn 20208 lspsneq0 20218 lsmelval2 20291 lspprabs 20301 lspabs3 20327 lspsnel4 20330 lspdisjb 20332 lspfixed 20334 lindsadd 35739 lshpnelb 36967 lsateln0 36978 lssats 36995 dia1dimid 39046 dochnel 39376 dihjat1lem 39411 dochsnkr2cl 39457 lcfrvalsnN 39524 lcfrlem15 39540 mapdpglem2 39656 mapdpglem9 39663 mapdpglem12 39666 mapdpglem14 39668 mapdindp0 39702 mapdindp3 39705 hdmap11lem2 39825 hdmaprnlem3N 39833 hdmaprnlem7N 39838 hdmaprnlem8N 39839 hdmaprnlem3eN 39841 hdmaplkr 39896 |
Copyright terms: Public domain | W3C validator |