Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnid | Structured version Visualization version GIF version |
Description: A vector belongs to the span of its singleton. (spansnid 29970 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsnid.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnid.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsnid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4747 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
2 | lspsnid.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspsnid.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 2, 3 | lspssid 20292 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
5 | 1, 4 | sylan2 594 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
6 | snssg 4723 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋}))) | |
7 | 6 | adantl 483 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋}))) |
8 | 5, 7 | mpbird 257 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 {csn 4565 ‘cfv 6458 Basecbs 16957 LModclmod 20168 LSpanclspn 20278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-lmod 20170 df-lss 20239 df-lsp 20279 |
This theorem is referenced by: lspsnel6 20301 lssats2 20307 lspsneli 20308 lspsn 20309 lspsneq0 20319 lsmelval2 20392 lspprabs 20402 lspabs3 20428 lspsnel4 20431 lspdisjb 20433 lspfixed 20435 lindsadd 35814 lshpnelb 37040 lsateln0 37051 lssats 37068 dia1dimid 39119 dochnel 39449 dihjat1lem 39484 dochsnkr2cl 39530 lcfrvalsnN 39597 lcfrlem15 39613 mapdpglem2 39729 mapdpglem9 39736 mapdpglem12 39739 mapdpglem14 39741 mapdindp0 39775 mapdindp3 39778 hdmap11lem2 39898 hdmaprnlem3N 39906 hdmaprnlem7N 39911 hdmaprnlem8N 39912 hdmaprnlem3eN 39914 hdmaplkr 39969 prjcrv0 40507 |
Copyright terms: Public domain | W3C validator |