MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnid Structured version   Visualization version   GIF version

Theorem lspsnid 19756
Description: A vector belongs to the span of its singleton. (spansnid 29344 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v 𝑉 = (Base‘𝑊)
lspsnid.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnid ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 4714 . . 3 (𝑋𝑉 → {𝑋} ⊆ 𝑉)
2 lspsnid.v . . . 4 𝑉 = (Base‘𝑊)
3 lspsnid.n . . . 4 𝑁 = (LSpan‘𝑊)
42, 3lspssid 19748 . . 3 ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
51, 4sylan2 595 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → {𝑋} ⊆ (𝑁‘{𝑋}))
6 snssg 4691 . . 3 (𝑋𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
76adantl 485 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋})))
85, 7mpbird 260 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wss 3908  {csn 4539  cfv 6334  Basecbs 16474  LModclmod 19625  LSpanclspn 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-lmod 19627  df-lss 19695  df-lsp 19735
This theorem is referenced by:  lspsnel6  19757  lssats2  19763  lspsneli  19764  lspsn  19765  lspsneq0  19775  lsmelval2  19848  lspprabs  19858  lspabs3  19884  lspsnel4  19887  lspdisjb  19889  lspfixed  19891  lindsadd  35008  lshpnelb  36238  lsateln0  36249  lssats  36266  dia1dimid  38317  dochnel  38647  dihjat1lem  38682  dochsnkr2cl  38728  lcfrvalsnN  38795  lcfrlem15  38811  mapdpglem2  38927  mapdpglem9  38934  mapdpglem12  38937  mapdpglem14  38939  mapdindp0  38973  mapdindp3  38976  hdmap11lem2  39096  hdmaprnlem3N  39104  hdmaprnlem7N  39109  hdmaprnlem8N  39110  hdmaprnlem3eN  39112  hdmaplkr  39167
  Copyright terms: Public domain W3C validator