Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnid | Structured version Visualization version GIF version |
Description: A vector belongs to the span of its singleton. (spansnid 29904 analog.) (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lspsnid.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnid.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsnid | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4746 | . . 3 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
2 | lspsnid.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspsnid.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | 2, 3 | lspssid 20228 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
5 | 1, 4 | sylan2 592 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → {𝑋} ⊆ (𝑁‘{𝑋})) |
6 | snssg 4723 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋}))) | |
7 | 6 | adantl 481 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ (𝑁‘{𝑋}) ↔ {𝑋} ⊆ (𝑁‘{𝑋}))) |
8 | 5, 7 | mpbird 256 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 {csn 4566 ‘cfv 6430 Basecbs 16893 LModclmod 20104 LSpanclspn 20214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-grp 18561 df-lmod 20106 df-lss 20175 df-lsp 20215 |
This theorem is referenced by: lspsnel6 20237 lssats2 20243 lspsneli 20244 lspsn 20245 lspsneq0 20255 lsmelval2 20328 lspprabs 20338 lspabs3 20364 lspsnel4 20367 lspdisjb 20369 lspfixed 20371 lindsadd 35749 lshpnelb 36977 lsateln0 36988 lssats 37005 dia1dimid 39056 dochnel 39386 dihjat1lem 39421 dochsnkr2cl 39467 lcfrvalsnN 39534 lcfrlem15 39550 mapdpglem2 39666 mapdpglem9 39673 mapdpglem12 39676 mapdpglem14 39678 mapdindp0 39712 mapdindp3 39715 hdmap11lem2 39835 hdmaprnlem3N 39843 hdmaprnlem7N 39848 hdmaprnlem8N 39849 hdmaprnlem3eN 39851 hdmaplkr 39906 prjcrv0 40450 |
Copyright terms: Public domain | W3C validator |