MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulass Structured version   Visualization version   GIF version

Theorem mavmulass 21074
Description: Associativity of the multiplication of two NxN matrices with an N-dimensional vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 25-Feb-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mavmulass.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
mavmulass.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulass.z (𝜑𝑍 ∈ (Base‘𝐴))
Assertion
Ref Expression
mavmulass (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))

Proof of Theorem mavmulass
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2825 . . . 4 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . . 4 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . . 4 (𝜑𝑁 ∈ Fin)
7 mavmulass.m . . . . . 6 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
8 mavmulass.x . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐴))
91, 3matbas2 20946 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
106, 5, 9syl2anc 584 . . . . . . 7 (𝜑 → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
118, 10eleqtrrd 2920 . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
12 mavmulass.z . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐴))
1312, 10eleqtrrd 2920 . . . . . 6 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑁)))
143, 5, 7, 6, 6, 6, 11, 13mamucl 20926 . . . . 5 (𝜑 → (𝑋 × 𝑍) ∈ (𝐵m (𝑁 × 𝑁)))
1514, 10eleqtrd 2919 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴))
16 1mavmul.y . . . 4 (𝜑𝑌 ∈ (𝐵m 𝑁))
171, 2, 3, 4, 5, 6, 15, 16mavmulcl 21072 . . 3 (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵m 𝑁))
18 elmapi 8421 . . 3 (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵m 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁𝐵)
19 ffn 6510 . . 3 (((𝑋 × 𝑍) · 𝑌):𝑁𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
2017, 18, 193syl 18 . 2 (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
211, 2, 3, 4, 5, 6, 12, 16mavmulcl 21072 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ (𝐵m 𝑁))
221, 2, 3, 4, 5, 6, 8, 21mavmulcl 21072 . . 3 (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵m 𝑁))
23 elmapi 8421 . . 3 ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵m 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁𝐵)
24 ffn 6510 . . 3 ((𝑋 · (𝑍 · 𝑌)):𝑁𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
2522, 23, 243syl 18 . 2 (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
26 ringcmn 19253 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
275, 26syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2827adantr 481 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ CMnd)
296adantr 481 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
305ad2antrr 722 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑅 ∈ Ring)
31 elmapi 8421 . . . . . . . . 9 (𝑋 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
3211, 31syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐵)
3332ad2antrr 722 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
34 simplr 765 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑖𝑁)
35 simprr 769 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑘𝑁)
3633, 34, 35fovrnd 7313 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵)
37 elmapi 8421 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
3813, 37syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐵)
3938ad2antrr 722 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
40 simprl 767 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑗𝑁)
4139, 35, 40fovrnd 7313 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵)
42 elmapi 8421 . . . . . . . . . 10 (𝑌 ∈ (𝐵m 𝑁) → 𝑌:𝑁𝐵)
43 ffvelrn 6844 . . . . . . . . . . 11 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4443ex 413 . . . . . . . . . 10 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4516, 42, 443syl 18 . . . . . . . . 9 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4645imp 407 . . . . . . . 8 ((𝜑𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4746ad2ant2r 743 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑌𝑗) ∈ 𝐵)
483, 4ringcl 19233 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
4930, 41, 47, 48syl3anc 1365 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
503, 4ringcl 19233 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
5130, 36, 49, 50syl3anc 1365 . . . . 5 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
523, 28, 29, 29, 51gsumcom3fi 19021 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
535ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
546ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
5511ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
5613ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑍 ∈ (𝐵m (𝑁 × 𝑁)))
57 simplr 765 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
58 simpr 485 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
597, 3, 4, 53, 54, 54, 54, 55, 56, 57, 58mamufv 20914 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))))
6059oveq1d 7166 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
61 eqid 2825 . . . . . . . 8 (0g𝑅) = (0g𝑅)
62 eqid 2825 . . . . . . . 8 (+g𝑅) = (+g𝑅)
6346adantlr 711 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
645adantr 481 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
6564ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
6632ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
67 simplr 765 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑖𝑁)
68 simpr 485 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
6966, 67, 68fovrnd 7313 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
7069adantlr 711 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
7138adantr 481 . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
7271ad2antrr 722 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
73 simpr 485 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
74 simplr 765 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑗𝑁)
7572, 73, 74fovrnd 7313 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
763, 4ringcl 19233 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
7765, 70, 75, 76syl3anc 1365 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
78 eqid 2825 . . . . . . . . 9 (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))
79 ovexd 7186 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ V)
80 fvexd 6681 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
8178, 54, 79, 80fsuppmptdm 8836 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) finSupp (0g𝑅))
823, 61, 62, 4, 53, 54, 63, 77, 81gsummulc1 19278 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
833, 4ringass 19236 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8430, 36, 41, 47, 83syl13anc 1366 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8584anassrs 468 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8685mpteq2dva 5157 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
8786oveq2d 7167 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8860, 82, 873eqtr2d 2866 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8988mpteq2dva 5157 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
9089oveq2d 7167 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
915ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
926ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑁 ∈ Fin)
9312ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑍 ∈ (Base‘𝐴))
9416ad2antrr 722 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑌 ∈ (𝐵m 𝑁))
951, 2, 3, 4, 91, 92, 93, 94, 68mavmulfv 21071 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
9695oveq2d 7167 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
9764ad2antrr 722 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
9871ad2antrr 722 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
99 simplr 765 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑘𝑁)
100 simpr 485 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
10198, 99, 100fovrnd 7313 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
10245ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
103102imp 407 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
10497, 101, 103, 48syl3anc 1365 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
105 eqid 2825 . . . . . . . . 9 (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))
106 ovexd 7186 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ V)
107 fvexd 6681 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (0g𝑅) ∈ V)
108105, 92, 106, 107fsuppmptdm 8836 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) finSupp (0g𝑅))
1093, 61, 62, 4, 91, 92, 69, 104, 108gsummulc2 19279 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
11096, 109eqtr4d 2863 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
111110mpteq2dva 5157 . . . . 5 ((𝜑𝑖𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
112111oveq2d 7167 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
11352, 90, 1123eqtr4d 2870 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
11415adantr 481 . . . 4 ((𝜑𝑖𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴))
11516adantr 481 . . . 4 ((𝜑𝑖𝑁) → 𝑌 ∈ (𝐵m 𝑁))
116 simpr 485 . . . 4 ((𝜑𝑖𝑁) → 𝑖𝑁)
1171, 2, 3, 4, 64, 29, 114, 115, 116mavmulfv 21071 . . 3 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))))
1188adantr 481 . . . 4 ((𝜑𝑖𝑁) → 𝑋 ∈ (Base‘𝐴))
11921adantr 481 . . . 4 ((𝜑𝑖𝑁) → (𝑍 · 𝑌) ∈ (𝐵m 𝑁))
1201, 2, 3, 4, 64, 29, 118, 119, 116mavmulfv 21071 . . 3 ((𝜑𝑖𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
121113, 117, 1203eqtr4d 2870 . 2 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖))
12220, 25, 121eqfnfvd 6800 1 (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  Vcvv 3499  cop 4569  cotp 4571  cmpt 5142   × cxp 5551   Fn wfn 6346  wf 6347  cfv 6351  (class class class)co 7151  m cmap 8399  Fincfn 8501  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  0gc0g 16705   Σg cgsu 16706  CMndccmn 18828  Ringcrg 19219   maMul cmmul 20910   Mat cmat 20932   maVecMul cmvmul 21065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-ot 4572  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-mhm 17946  df-submnd 17947  df-grp 18038  df-minusg 18039  df-mulg 18157  df-ghm 18288  df-cntz 18379  df-cmn 18830  df-abl 18831  df-mgp 19162  df-ur 19174  df-ring 19221  df-sra 19866  df-rgmod 19867  df-dsmm 20792  df-frlm 20807  df-mamu 20911  df-mat 20933  df-mvmul 21066
This theorem is referenced by:  slesolinv  21205  slesolinvbi  21206
  Copyright terms: Public domain W3C validator