| Step | Hyp | Ref
| Expression |
| 1 | | 1mavmul.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 2 | | 1mavmul.t |
. . . 4
⊢ · =
(𝑅 maVecMul 〈𝑁, 𝑁〉) |
| 3 | | 1mavmul.b |
. . . 4
⊢ 𝐵 = (Base‘𝑅) |
| 4 | | eqid 2737 |
. . . 4
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | 1mavmul.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 6 | | 1mavmul.n |
. . . 4
⊢ (𝜑 → 𝑁 ∈ Fin) |
| 7 | | mavmulass.m |
. . . . . 6
⊢ × =
(𝑅 maMul 〈𝑁, 𝑁, 𝑁〉) |
| 8 | | mavmulass.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (Base‘𝐴)) |
| 9 | 1, 3 | matbas2 22427 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 10 | 6, 5, 9 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐵 ↑m (𝑁 × 𝑁)) = (Base‘𝐴)) |
| 11 | 8, 10 | eleqtrrd 2844 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 12 | | mavmulass.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (Base‘𝐴)) |
| 13 | 12, 10 | eleqtrrd 2844 |
. . . . . 6
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 14 | 3, 5, 7, 6, 6, 6, 11, 13 | mamucl 22405 |
. . . . 5
⊢ (𝜑 → (𝑋 × 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 15 | 14, 10 | eleqtrd 2843 |
. . . 4
⊢ (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴)) |
| 16 | | 1mavmul.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| 17 | 1, 2, 3, 4, 5, 6, 15, 16 | mavmulcl 22553 |
. . 3
⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| 18 | | elmapi 8889 |
. . 3
⊢ (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵 ↑m 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁⟶𝐵) |
| 19 | | ffn 6736 |
. . 3
⊢ (((𝑋 × 𝑍) · 𝑌):𝑁⟶𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁) |
| 20 | 17, 18, 19 | 3syl 18 |
. 2
⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁) |
| 21 | 1, 2, 3, 4, 5, 6, 12, 16 | mavmulcl 22553 |
. . . 4
⊢ (𝜑 → (𝑍 · 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| 22 | 1, 2, 3, 4, 5, 6, 8, 21 | mavmulcl 22553 |
. . 3
⊢ (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵 ↑m 𝑁)) |
| 23 | | elmapi 8889 |
. . 3
⊢ ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵 ↑m 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁⟶𝐵) |
| 24 | | ffn 6736 |
. . 3
⊢ ((𝑋 · (𝑍 · 𝑌)):𝑁⟶𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁) |
| 25 | 22, 23, 24 | 3syl 18 |
. 2
⊢ (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁) |
| 26 | 5 | ringcmnd 20281 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 27 | 26 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ CMnd) |
| 28 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 29 | 5 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 30 | | elmapi 8889 |
. . . . . . . . 9
⊢ (𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 31 | 11, 30 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 32 | 31 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 33 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 34 | | simprr 773 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑘 ∈ 𝑁) |
| 35 | 32, 33, 34 | fovcdmd 7605 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵) |
| 36 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 37 | 13, 36 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 38 | 37 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 39 | | simprl 771 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 40 | 38, 34, 39 | fovcdmd 7605 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵) |
| 41 | | elmapi 8889 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐵 ↑m 𝑁) → 𝑌:𝑁⟶𝐵) |
| 42 | | ffvelcdm 7101 |
. . . . . . . . . . 11
⊢ ((𝑌:𝑁⟶𝐵 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 43 | 42 | ex 412 |
. . . . . . . . . 10
⊢ (𝑌:𝑁⟶𝐵 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 44 | 16, 41, 43 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 45 | 44 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 46 | 45 | ad2ant2r 747 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (𝑌‘𝑗) ∈ 𝐵) |
| 47 | 3, 4, 29, 40, 46 | ringcld 20257 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ 𝐵) |
| 48 | 3, 4, 29, 35, 47 | ringcld 20257 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) ∈ 𝐵) |
| 49 | 3, 27, 28, 28, 48 | gsumcom3fi 19997 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))))) |
| 50 | 5 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 51 | 6 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 52 | 11 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑋 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 53 | 13 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑁))) |
| 54 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 55 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 56 | 7, 3, 4, 50, 51, 51, 51, 52, 53, 54, 55 | mamufv 22398 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))))) |
| 57 | 56 | oveq1d 7446 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = ((𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))))(.r‘𝑅)(𝑌‘𝑗))) |
| 58 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 59 | 45 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 60 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 61 | 60 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 62 | 31 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵) |
| 63 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 64 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 65 | 62, 63, 64 | fovcdmd 7605 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑋𝑘) ∈ 𝐵) |
| 66 | 65 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑖𝑋𝑘) ∈ 𝐵) |
| 67 | 37 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 68 | 67 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 69 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 70 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 71 | 68, 69, 70 | fovcdmd 7605 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑍𝑗) ∈ 𝐵) |
| 72 | 3, 4, 61, 66, 71 | ringcld 20257 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗)) ∈ 𝐵) |
| 73 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))) = (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))) |
| 74 | | ovexd 7466 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗)) ∈ V) |
| 75 | | fvexd 6921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 76 | 73, 51, 74, 75 | fsuppmptdm 9416 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))) finSupp (0g‘𝑅)) |
| 77 | 3, 58, 4, 50, 51, 59, 72, 76 | gsummulc1 20313 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)))) = ((𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))))(.r‘𝑅)(𝑌‘𝑗))) |
| 78 | 3, 4 | ringass 20250 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌‘𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 79 | 29, 35, 40, 46, 78 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ (𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁)) → (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 80 | 79 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)) = ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))) |
| 81 | 80 | mpteq2dva 5242 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ 𝑁 ↦ (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗))) = (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 82 | 81 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (((𝑖𝑋𝑘)(.r‘𝑅)(𝑘𝑍𝑗))(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 83 | 57, 77, 82 | 3eqtr2d 2783 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 84 | 83 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))))) |
| 85 | 84 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))))) |
| 86 | 5 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 87 | 6 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 88 | 12 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑍 ∈ (Base‘𝐴)) |
| 89 | 16 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| 90 | 1, 2, 3, 4, 86, 87, 88, 89, 64 | mavmulfv 22552 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 91 | 90 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 92 | 60 | ad2antrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 93 | 67 | ad2antrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵) |
| 94 | | simplr 769 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 95 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 96 | 93, 94, 95 | fovcdmd 7605 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑘𝑍𝑗) ∈ 𝐵) |
| 97 | 44 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑗 ∈ 𝑁 → (𝑌‘𝑗) ∈ 𝐵)) |
| 98 | 97 | imp 406 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → (𝑌‘𝑗) ∈ 𝐵) |
| 99 | 3, 4, 92, 96, 98 | ringcld 20257 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ 𝐵) |
| 100 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) = (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) |
| 101 | | ovexd 7466 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) ∧ 𝑗 ∈ 𝑁) → ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)) ∈ V) |
| 102 | | fvexd 6921 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 103 | 100, 87, 101, 102 | fsuppmptdm 9416 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))) finSupp (0g‘𝑅)) |
| 104 | 3, 58, 4, 86, 87, 65, 99, 103 | gsummulc2 20314 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))) = ((𝑖𝑋𝑘)(.r‘𝑅)(𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 105 | 91, 104 | eqtr4d 2780 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ 𝑁) ∧ 𝑘 ∈ 𝑁) → ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))) |
| 106 | 105 | mpteq2dva 5242 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗))))))) |
| 107 | 106 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑘𝑍𝑗)(.r‘𝑅)(𝑌‘𝑗)))))))) |
| 108 | 49, 85, 107 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗)))) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘))))) |
| 109 | 15 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴)) |
| 110 | 16 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑌 ∈ (𝐵 ↑m 𝑁)) |
| 111 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 112 | 1, 2, 3, 4, 60, 28, 109, 110, 111 | mavmulfv 22552 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r‘𝑅)(𝑌‘𝑗))))) |
| 113 | 8 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 114 | 21 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (𝑍 · 𝑌) ∈ (𝐵 ↑m 𝑁)) |
| 115 | 1, 2, 3, 4, 60, 28, 113, 114, 111 | mavmulfv 22552 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘 ∈ 𝑁 ↦ ((𝑖𝑋𝑘)(.r‘𝑅)((𝑍 · 𝑌)‘𝑘))))) |
| 116 | 108, 112,
115 | 3eqtr4d 2787 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖)) |
| 117 | 20, 25, 116 | eqfnfvd 7054 |
1
⊢ (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌))) |