MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulass Structured version   Visualization version   GIF version

Theorem mavmulass 22452
Description: Associativity of the multiplication of two NxN matrices with an N-dimensional vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 25-Feb-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mavmulass.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
mavmulass.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulass.z (𝜑𝑍 ∈ (Base‘𝐴))
Assertion
Ref Expression
mavmulass (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))

Proof of Theorem mavmulass
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . . 4 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . . 4 (𝜑𝑁 ∈ Fin)
7 mavmulass.m . . . . . 6 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
8 mavmulass.x . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐴))
91, 3matbas2 22324 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
106, 5, 9syl2anc 584 . . . . . . 7 (𝜑 → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
118, 10eleqtrrd 2831 . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
12 mavmulass.z . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐴))
1312, 10eleqtrrd 2831 . . . . . 6 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑁)))
143, 5, 7, 6, 6, 6, 11, 13mamucl 22304 . . . . 5 (𝜑 → (𝑋 × 𝑍) ∈ (𝐵m (𝑁 × 𝑁)))
1514, 10eleqtrd 2830 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴))
16 1mavmul.y . . . 4 (𝜑𝑌 ∈ (𝐵m 𝑁))
171, 2, 3, 4, 5, 6, 15, 16mavmulcl 22450 . . 3 (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵m 𝑁))
18 elmapi 8783 . . 3 (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵m 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁𝐵)
19 ffn 6656 . . 3 (((𝑋 × 𝑍) · 𝑌):𝑁𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
2017, 18, 193syl 18 . 2 (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
211, 2, 3, 4, 5, 6, 12, 16mavmulcl 22450 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ (𝐵m 𝑁))
221, 2, 3, 4, 5, 6, 8, 21mavmulcl 22450 . . 3 (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵m 𝑁))
23 elmapi 8783 . . 3 ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵m 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁𝐵)
24 ffn 6656 . . 3 ((𝑋 · (𝑍 · 𝑌)):𝑁𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
2522, 23, 243syl 18 . 2 (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
265ringcmnd 20187 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2726adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ CMnd)
286adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
295ad2antrr 726 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑅 ∈ Ring)
30 elmapi 8783 . . . . . . . . 9 (𝑋 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
3111, 30syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐵)
3231ad2antrr 726 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
33 simplr 768 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑖𝑁)
34 simprr 772 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑘𝑁)
3532, 33, 34fovcdmd 7525 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵)
36 elmapi 8783 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
3713, 36syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐵)
3837ad2antrr 726 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
39 simprl 770 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑗𝑁)
4038, 34, 39fovcdmd 7525 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵)
41 elmapi 8783 . . . . . . . . . 10 (𝑌 ∈ (𝐵m 𝑁) → 𝑌:𝑁𝐵)
42 ffvelcdm 7019 . . . . . . . . . . 11 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4342ex 412 . . . . . . . . . 10 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4416, 41, 433syl 18 . . . . . . . . 9 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4544imp 406 . . . . . . . 8 ((𝜑𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4645ad2ant2r 747 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑌𝑗) ∈ 𝐵)
473, 4, 29, 40, 46ringcld 20163 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
483, 4, 29, 35, 47ringcld 20163 . . . . 5 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
493, 27, 28, 28, 48gsumcom3fi 19876 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
505ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
516ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
5211ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
5313ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑍 ∈ (𝐵m (𝑁 × 𝑁)))
54 simplr 768 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
55 simpr 484 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
567, 3, 4, 50, 51, 51, 51, 52, 53, 54, 55mamufv 22297 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))))
5756oveq1d 7368 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
58 eqid 2729 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5945adantlr 715 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
605adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
6160ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
6231ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
63 simplr 768 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑖𝑁)
64 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
6562, 63, 64fovcdmd 7525 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
6665adantlr 715 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
6737adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
6867ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
69 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
70 simplr 768 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑗𝑁)
7168, 69, 70fovcdmd 7525 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
723, 4, 61, 66, 71ringcld 20163 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
73 eqid 2729 . . . . . . . . 9 (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))
74 ovexd 7388 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ V)
75 fvexd 6841 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
7673, 51, 74, 75fsuppmptdm 9285 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) finSupp (0g𝑅))
773, 58, 4, 50, 51, 59, 72, 76gsummulc1 20219 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
783, 4ringass 20156 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
7929, 35, 40, 46, 78syl13anc 1374 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8079anassrs 467 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8180mpteq2dva 5188 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
8281oveq2d 7369 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8357, 77, 823eqtr2d 2770 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8483mpteq2dva 5188 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
8584oveq2d 7369 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
865ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
876ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑁 ∈ Fin)
8812ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑍 ∈ (Base‘𝐴))
8916ad2antrr 726 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑌 ∈ (𝐵m 𝑁))
901, 2, 3, 4, 86, 87, 88, 89, 64mavmulfv 22449 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
9190oveq2d 7369 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
9260ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
9367ad2antrr 726 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
94 simplr 768 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑘𝑁)
95 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
9693, 94, 95fovcdmd 7525 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
9744ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
9897imp 406 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
993, 4, 92, 96, 98ringcld 20163 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
100 eqid 2729 . . . . . . . . 9 (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))
101 ovexd 7388 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ V)
102 fvexd 6841 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (0g𝑅) ∈ V)
103100, 87, 101, 102fsuppmptdm 9285 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) finSupp (0g𝑅))
1043, 58, 4, 86, 87, 65, 99, 103gsummulc2 20220 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
10591, 104eqtr4d 2767 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
106105mpteq2dva 5188 . . . . 5 ((𝜑𝑖𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
107106oveq2d 7369 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
10849, 85, 1073eqtr4d 2774 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
10915adantr 480 . . . 4 ((𝜑𝑖𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴))
11016adantr 480 . . . 4 ((𝜑𝑖𝑁) → 𝑌 ∈ (𝐵m 𝑁))
111 simpr 484 . . . 4 ((𝜑𝑖𝑁) → 𝑖𝑁)
1121, 2, 3, 4, 60, 28, 109, 110, 111mavmulfv 22449 . . 3 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))))
1138adantr 480 . . . 4 ((𝜑𝑖𝑁) → 𝑋 ∈ (Base‘𝐴))
11421adantr 480 . . . 4 ((𝜑𝑖𝑁) → (𝑍 · 𝑌) ∈ (𝐵m 𝑁))
1151, 2, 3, 4, 60, 28, 113, 114, 111mavmulfv 22449 . . 3 ((𝜑𝑖𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
116108, 112, 1153eqtr4d 2774 . 2 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖))
11720, 25, 116eqfnfvd 6972 1 (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cop 4585  cotp 4587  cmpt 5176   × cxp 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  Basecbs 17138  .rcmulr 17180  0gc0g 17361   Σg cgsu 17362  CMndccmn 19677  Ringcrg 20136   maMul cmmul 22293   Mat cmat 22310   maVecMul cmvmul 22443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-mulg 18965  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-mamu 22294  df-mat 22311  df-mvmul 22444
This theorem is referenced by:  slesolinv  22583  slesolinvbi  22584
  Copyright terms: Public domain W3C validator