MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulass Structured version   Visualization version   GIF version

Theorem mavmulass 22576
Description: Associativity of the multiplication of two NxN matrices with an N-dimensional vector. (Contributed by AV, 9-Feb-2019.) (Revised by AV, 25-Feb-2019.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
1mavmul.a 𝐴 = (𝑁 Mat 𝑅)
1mavmul.b 𝐵 = (Base‘𝑅)
1mavmul.t · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
1mavmul.r (𝜑𝑅 ∈ Ring)
1mavmul.n (𝜑𝑁 ∈ Fin)
1mavmul.y (𝜑𝑌 ∈ (𝐵m 𝑁))
mavmulass.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
mavmulass.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulass.z (𝜑𝑍 ∈ (Base‘𝐴))
Assertion
Ref Expression
mavmulass (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))

Proof of Theorem mavmulass
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1mavmul.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 1mavmul.t . . . 4 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 1mavmul.b . . . 4 𝐵 = (Base‘𝑅)
4 eqid 2740 . . . 4 (.r𝑅) = (.r𝑅)
5 1mavmul.r . . . 4 (𝜑𝑅 ∈ Ring)
6 1mavmul.n . . . 4 (𝜑𝑁 ∈ Fin)
7 mavmulass.m . . . . . 6 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
8 mavmulass.x . . . . . . 7 (𝜑𝑋 ∈ (Base‘𝐴))
91, 3matbas2 22448 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
106, 5, 9syl2anc 583 . . . . . . 7 (𝜑 → (𝐵m (𝑁 × 𝑁)) = (Base‘𝐴))
118, 10eleqtrrd 2847 . . . . . 6 (𝜑𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
12 mavmulass.z . . . . . . 7 (𝜑𝑍 ∈ (Base‘𝐴))
1312, 10eleqtrrd 2847 . . . . . 6 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑁)))
143, 5, 7, 6, 6, 6, 11, 13mamucl 22426 . . . . 5 (𝜑 → (𝑋 × 𝑍) ∈ (𝐵m (𝑁 × 𝑁)))
1514, 10eleqtrd 2846 . . . 4 (𝜑 → (𝑋 × 𝑍) ∈ (Base‘𝐴))
16 1mavmul.y . . . 4 (𝜑𝑌 ∈ (𝐵m 𝑁))
171, 2, 3, 4, 5, 6, 15, 16mavmulcl 22574 . . 3 (𝜑 → ((𝑋 × 𝑍) · 𝑌) ∈ (𝐵m 𝑁))
18 elmapi 8907 . . 3 (((𝑋 × 𝑍) · 𝑌) ∈ (𝐵m 𝑁) → ((𝑋 × 𝑍) · 𝑌):𝑁𝐵)
19 ffn 6747 . . 3 (((𝑋 × 𝑍) · 𝑌):𝑁𝐵 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
2017, 18, 193syl 18 . 2 (𝜑 → ((𝑋 × 𝑍) · 𝑌) Fn 𝑁)
211, 2, 3, 4, 5, 6, 12, 16mavmulcl 22574 . . . 4 (𝜑 → (𝑍 · 𝑌) ∈ (𝐵m 𝑁))
221, 2, 3, 4, 5, 6, 8, 21mavmulcl 22574 . . 3 (𝜑 → (𝑋 · (𝑍 · 𝑌)) ∈ (𝐵m 𝑁))
23 elmapi 8907 . . 3 ((𝑋 · (𝑍 · 𝑌)) ∈ (𝐵m 𝑁) → (𝑋 · (𝑍 · 𝑌)):𝑁𝐵)
24 ffn 6747 . . 3 ((𝑋 · (𝑍 · 𝑌)):𝑁𝐵 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
2522, 23, 243syl 18 . 2 (𝜑 → (𝑋 · (𝑍 · 𝑌)) Fn 𝑁)
265ringcmnd 20307 . . . . . 6 (𝜑𝑅 ∈ CMnd)
2726adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑅 ∈ CMnd)
286adantr 480 . . . . 5 ((𝜑𝑖𝑁) → 𝑁 ∈ Fin)
295ad2antrr 725 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑅 ∈ Ring)
30 elmapi 8907 . . . . . . . . 9 (𝑋 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
3111, 30syl 17 . . . . . . . 8 (𝜑𝑋:(𝑁 × 𝑁)⟶𝐵)
3231ad2antrr 725 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
33 simplr 768 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑖𝑁)
34 simprr 772 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑘𝑁)
3532, 33, 34fovcdmd 7622 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑖𝑋𝑘) ∈ 𝐵)
36 elmapi 8907 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
3713, 36syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑁)⟶𝐵)
3837ad2antrr 725 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
39 simprl 770 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → 𝑗𝑁)
4038, 34, 39fovcdmd 7622 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑘𝑍𝑗) ∈ 𝐵)
41 elmapi 8907 . . . . . . . . . 10 (𝑌 ∈ (𝐵m 𝑁) → 𝑌:𝑁𝐵)
42 ffvelcdm 7115 . . . . . . . . . . 11 ((𝑌:𝑁𝐵𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4342ex 412 . . . . . . . . . 10 (𝑌:𝑁𝐵 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4416, 41, 433syl 18 . . . . . . . . 9 (𝜑 → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
4544imp 406 . . . . . . . 8 ((𝜑𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
4645ad2ant2r 746 . . . . . . 7 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (𝑌𝑗) ∈ 𝐵)
473, 4, 29, 40, 46ringcld 20286 . . . . . 6 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
483, 4, 29, 35, 47ringcld 20286 . . . . 5 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) ∈ 𝐵)
493, 27, 28, 28, 48gsumcom3fi 20021 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
505ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
516ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑁 ∈ Fin)
5211ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑋 ∈ (𝐵m (𝑁 × 𝑁)))
5313ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑍 ∈ (𝐵m (𝑁 × 𝑁)))
54 simplr 768 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑖𝑁)
55 simpr 484 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
567, 3, 4, 50, 51, 51, 51, 52, 53, 54, 55mamufv 22419 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑖(𝑋 × 𝑍)𝑗) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))))
5756oveq1d 7463 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
58 eqid 2740 . . . . . . . 8 (0g𝑅) = (0g𝑅)
5945adantlr 714 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
605adantr 480 . . . . . . . . . 10 ((𝜑𝑖𝑁) → 𝑅 ∈ Ring)
6160ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
6231ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑋:(𝑁 × 𝑁)⟶𝐵)
63 simplr 768 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑖𝑁)
64 simpr 484 . . . . . . . . . . 11 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
6562, 63, 64fovcdmd 7622 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
6665adantlr 714 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑖𝑋𝑘) ∈ 𝐵)
6737adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
6867ad2antrr 725 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
69 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑘𝑁)
70 simplr 768 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → 𝑗𝑁)
7168, 69, 70fovcdmd 7622 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
723, 4, 61, 66, 71ringcld 20286 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ 𝐵)
73 eqid 2740 . . . . . . . . 9 (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)))
74 ovexd 7483 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗)) ∈ V)
75 fvexd 6935 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (0g𝑅) ∈ V)
7673, 51, 74, 75fsuppmptdm 9445 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))) finSupp (0g𝑅))
773, 58, 4, 50, 51, 59, 72, 76gsummulc1 20339 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = ((𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))))(.r𝑅)(𝑌𝑗)))
783, 4ringass 20280 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑘) ∈ 𝐵 ∧ (𝑘𝑍𝑗) ∈ 𝐵 ∧ (𝑌𝑗) ∈ 𝐵)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
7929, 35, 40, 46, 78syl13anc 1372 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ (𝑗𝑁𝑘𝑁)) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8079anassrs 467 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑗𝑁) ∧ 𝑘𝑁) → (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)) = ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))
8180mpteq2dva 5266 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗))) = (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
8281oveq2d 7464 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → (𝑅 Σg (𝑘𝑁 ↦ (((𝑖𝑋𝑘)(.r𝑅)(𝑘𝑍𝑗))(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8357, 77, 823eqtr2d 2786 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑗𝑁) → ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
8483mpteq2dva 5266 . . . . 5 ((𝜑𝑖𝑁) → (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
8584oveq2d 7464 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
865ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
876ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑁 ∈ Fin)
8812ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑍 ∈ (Base‘𝐴))
8916ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → 𝑌 ∈ (𝐵m 𝑁))
901, 2, 3, 4, 86, 87, 88, 89, 64mavmulfv 22573 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑍 · 𝑌)‘𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))
9190oveq2d 7464 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
9260ad2antrr 725 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
9367ad2antrr 725 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑁)⟶𝐵)
94 simplr 768 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑘𝑁)
95 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → 𝑗𝑁)
9693, 94, 95fovcdmd 7622 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑘𝑍𝑗) ∈ 𝐵)
9744ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 → (𝑌𝑗) ∈ 𝐵))
9897imp 406 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → (𝑌𝑗) ∈ 𝐵)
993, 4, 92, 96, 98ringcld 20286 . . . . . . . 8 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ 𝐵)
100 eqid 2740 . . . . . . . . 9 (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) = (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))
101 ovexd 7483 . . . . . . . . 9 ((((𝜑𝑖𝑁) ∧ 𝑘𝑁) ∧ 𝑗𝑁) → ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)) ∈ V)
102 fvexd 6935 . . . . . . . . 9 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (0g𝑅) ∈ V)
103100, 87, 101, 102fsuppmptdm 9445 . . . . . . . 8 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))) finSupp (0g𝑅))
1043, 58, 4, 86, 87, 65, 99, 103gsummulc2 20340 . . . . . . 7 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))) = ((𝑖𝑋𝑘)(.r𝑅)(𝑅 Σg (𝑗𝑁 ↦ ((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
10591, 104eqtr4d 2783 . . . . . 6 (((𝜑𝑖𝑁) ∧ 𝑘𝑁) → ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))
106105mpteq2dva 5266 . . . . 5 ((𝜑𝑖𝑁) → (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘))) = (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗)))))))
107106oveq2d 7464 . . . 4 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))) = (𝑅 Σg (𝑘𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑘𝑍𝑗)(.r𝑅)(𝑌𝑗))))))))
10849, 85, 1073eqtr4d 2790 . . 3 ((𝜑𝑖𝑁) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
10915adantr 480 . . . 4 ((𝜑𝑖𝑁) → (𝑋 × 𝑍) ∈ (Base‘𝐴))
11016adantr 480 . . . 4 ((𝜑𝑖𝑁) → 𝑌 ∈ (𝐵m 𝑁))
111 simpr 484 . . . 4 ((𝜑𝑖𝑁) → 𝑖𝑁)
1121, 2, 3, 4, 60, 28, 109, 110, 111mavmulfv 22573 . . 3 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(𝑋 × 𝑍)𝑗)(.r𝑅)(𝑌𝑗)))))
1138adantr 480 . . . 4 ((𝜑𝑖𝑁) → 𝑋 ∈ (Base‘𝐴))
11421adantr 480 . . . 4 ((𝜑𝑖𝑁) → (𝑍 · 𝑌) ∈ (𝐵m 𝑁))
1151, 2, 3, 4, 60, 28, 113, 114, 111mavmulfv 22573 . . 3 ((𝜑𝑖𝑁) → ((𝑋 · (𝑍 · 𝑌))‘𝑖) = (𝑅 Σg (𝑘𝑁 ↦ ((𝑖𝑋𝑘)(.r𝑅)((𝑍 · 𝑌)‘𝑘)))))
116108, 112, 1153eqtr4d 2790 . 2 ((𝜑𝑖𝑁) → (((𝑋 × 𝑍) · 𝑌)‘𝑖) = ((𝑋 · (𝑍 · 𝑌))‘𝑖))
11720, 25, 116eqfnfvd 7067 1 (𝜑 → ((𝑋 × 𝑍) · 𝑌) = (𝑋 · (𝑍 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654  cotp 4656  cmpt 5249   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  Basecbs 17258  .rcmulr 17312  0gc0g 17499   Σg cgsu 17500  CMndccmn 19822  Ringcrg 20260   maMul cmmul 22415   Mat cmat 22432   maVecMul cmvmul 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-mulg 19108  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-ur 20209  df-ring 20262  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-mamu 22416  df-mat 22433  df-mvmul 22568
This theorem is referenced by:  slesolinv  22707  slesolinvbi  22708
  Copyright terms: Public domain W3C validator