Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > slesolvec | Structured version Visualization version GIF version |
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
Ref | Expression |
---|---|
slesolex.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
slesolex.b | ⊢ 𝐵 = (Base‘𝐴) |
slesolex.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
slesolex.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
Ref | Expression |
---|---|
slesolvec | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slesolex.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | slesolex.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 21127 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 498 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | simpr 488 | . . . . . . . 8 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) | |
6 | simpl 486 | . . . . . . . 8 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅) | |
7 | 5, 5, 6 | 3jca 1126 | . . . . . . 7 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) |
8 | 7 | ex 416 | . . . . . 6 ⊢ (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
9 | 8 | adantr 484 | . . . . 5 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
10 | 4, 9 | syl5com 31 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
11 | 10 | adantr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
12 | 11 | impcom 411 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) |
13 | simpr 488 | . . 3 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
14 | simpr 488 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
15 | 13, 14 | anim12i 615 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑉)) |
16 | eqid 2759 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
17 | eqid 2759 | . . 3 ⊢ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁)) | |
18 | slesolex.v | . . 3 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
19 | slesolex.x | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
20 | 16, 17, 18, 19, 18 | mavmulsolcl 21266 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
21 | 12, 15, 20 | syl2anc 587 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 Vcvv 3410 ∅c0 4228 〈cop 4532 × cxp 5527 ‘cfv 6341 (class class class)co 7157 ↑m cmap 8423 Fincfn 8541 Basecbs 16556 Ringcrg 19380 Mat cmat 21122 maVecMul cmvmul 21255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-1st 7700 df-2nd 7701 df-map 8425 df-slot 16560 df-base 16562 df-mat 21123 df-mvmul 21256 |
This theorem is referenced by: slesolinv 21395 cramerimplem3 21400 cramerimp 21401 cramer 21406 |
Copyright terms: Public domain | W3C validator |