MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolvec Structured version   Visualization version   GIF version

Theorem slesolvec 22566
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
slesolvec (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))

Proof of Theorem slesolvec
StepHypRef Expression
1 slesolex.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 slesolex.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 22299 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
5 simpr 484 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
6 simpl 482 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅)
75, 5, 63jca 1128 . . . . . . 7 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
87ex 412 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
98adantr 480 . . . . 5 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
104, 9syl5com 31 . . . 4 (𝑋𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1110adantr 480 . . 3 ((𝑋𝐵𝑌𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1211impcom 407 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
13 simpr 484 . . 3 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
14 simpr 484 . . 3 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
1513, 14anim12i 613 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑌𝑉))
16 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2729 . . 3 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
18 slesolex.v . . 3 𝑉 = ((Base‘𝑅) ↑m 𝑁)
19 slesolex.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
2016, 17, 18, 19, 18mavmulsolcl 22438 . 2 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2112, 15, 20syl2anc 584 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296  cop 4595   × cxp 5636  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  Basecbs 17179  Ringcrg 20142   Mat cmat 22294   maVecMul cmvmul 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-map 8801  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-mat 22295  df-mvmul 22428
This theorem is referenced by:  slesolinv  22567  cramerimplem3  22572  cramerimp  22573  cramer  22578
  Copyright terms: Public domain W3C validator