| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slesolvec | Structured version Visualization version GIF version | ||
| Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
| Ref | Expression |
|---|---|
| slesolex.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| slesolex.b | ⊢ 𝐵 = (Base‘𝐴) |
| slesolex.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| slesolex.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
| Ref | Expression |
|---|---|
| slesolvec | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slesolex.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 2 | slesolex.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
| 3 | 1, 2 | matrcl 22305 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 4 | 3 | simpld 494 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) | |
| 6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅) | |
| 7 | 5, 5, 6 | 3jca 1128 | . . . . . . 7 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) |
| 8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
| 10 | 4, 9 | syl5com 31 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
| 12 | 11 | impcom 407 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) |
| 13 | simpr 484 | . . 3 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
| 14 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
| 15 | 13, 14 | anim12i 613 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑉)) |
| 16 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 17 | eqid 2730 | . . 3 ⊢ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁)) | |
| 18 | slesolex.v | . . 3 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 19 | slesolex.x | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
| 20 | 16, 17, 18, 19, 18 | mavmulsolcl 22444 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
| 21 | 12, 15, 20 | syl2anc 584 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 Vcvv 3455 ∅c0 4304 〈cop 4603 × cxp 5644 ‘cfv 6519 (class class class)co 7394 ↑m cmap 8803 Fincfn 8922 Basecbs 17185 Ringcrg 20148 Mat cmat 22300 maVecMul cmvmul 22433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-1cn 11144 ax-addcl 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-map 8805 df-nn 12198 df-slot 17158 df-ndx 17170 df-base 17186 df-mat 22301 df-mvmul 22434 |
| This theorem is referenced by: slesolinv 22573 cramerimplem3 22578 cramerimp 22579 cramer 22584 |
| Copyright terms: Public domain | W3C validator |