MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolvec Structured version   Visualization version   GIF version

Theorem slesolvec 22706
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
slesolvec (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))

Proof of Theorem slesolvec
StepHypRef Expression
1 slesolex.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 slesolex.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 22437 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 494 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
5 simpr 484 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
6 simpl 482 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅)
75, 5, 63jca 1128 . . . . . . 7 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
87ex 412 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
98adantr 480 . . . . 5 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
104, 9syl5com 31 . . . 4 (𝑋𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1110adantr 480 . . 3 ((𝑋𝐵𝑌𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1211impcom 407 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
13 simpr 484 . . 3 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
14 simpr 484 . . 3 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
1513, 14anim12i 612 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑌𝑉))
16 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2740 . . 3 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
18 slesolex.v . . 3 𝑉 = ((Base‘𝑅) ↑m 𝑁)
19 slesolex.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
2016, 17, 18, 19, 18mavmulsolcl 22578 . 2 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2112, 15, 20syl2anc 583 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  Basecbs 17258  Ringcrg 20260   Mat cmat 22432   maVecMul cmvmul 22567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294  df-slot 17229  df-ndx 17241  df-base 17259  df-mat 22433  df-mvmul 22568
This theorem is referenced by:  slesolinv  22707  cramerimplem3  22712  cramerimp  22713  cramer  22718
  Copyright terms: Public domain W3C validator