![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slesolvec | Structured version Visualization version GIF version |
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
Ref | Expression |
---|---|
slesolex.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
slesolex.b | ⊢ 𝐵 = (Base‘𝐴) |
slesolex.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
slesolex.x | ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) |
Ref | Expression |
---|---|
slesolvec | ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slesolex.a | . . . . . . 7 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | slesolex.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐴) | |
3 | 1, 2 | matrcl 22432 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
4 | 3 | simpld 494 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑁 ∈ Fin) |
5 | simpr 484 | . . . . . . . 8 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin) | |
6 | simpl 482 | . . . . . . . 8 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅) | |
7 | 5, 5, 6 | 3jca 1127 | . . . . . . 7 ⊢ ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) |
8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
10 | 4, 9 | syl5com 31 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
11 | 10 | adantr 480 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))) |
12 | 11 | impcom 407 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)) |
13 | simpr 484 | . . 3 ⊢ ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) | |
14 | simpr 484 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) | |
15 | 13, 14 | anim12i 613 | . 2 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑉)) |
16 | eqid 2735 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
17 | eqid 2735 | . . 3 ⊢ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁)) | |
18 | slesolex.v | . . 3 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
19 | slesolex.x | . . 3 ⊢ · = (𝑅 maVecMul 〈𝑁, 𝑁〉) | |
20 | 16, 17, 18, 19, 18 | mavmulsolcl 22573 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
21 | 12, 15, 20 | syl2anc 584 | 1 ⊢ (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝑋 · 𝑍) = 𝑌 → 𝑍 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∅c0 4339 〈cop 4637 × cxp 5687 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 Basecbs 17245 Ringcrg 20251 Mat cmat 22427 maVecMul cmvmul 22562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-map 8867 df-nn 12265 df-slot 17216 df-ndx 17228 df-base 17246 df-mat 22428 df-mvmul 22563 |
This theorem is referenced by: slesolinv 22702 cramerimplem3 22707 cramerimp 22708 cramer 22713 |
Copyright terms: Public domain | W3C validator |