Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  slesolvec Structured version   Visualization version   GIF version

Theorem slesolvec 21394
 Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.)
Hypotheses
Ref Expression
slesolex.a 𝐴 = (𝑁 Mat 𝑅)
slesolex.b 𝐵 = (Base‘𝐴)
slesolex.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
slesolex.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
Assertion
Ref Expression
slesolvec (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))

Proof of Theorem slesolvec
StepHypRef Expression
1 slesolex.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2 slesolex.b . . . . . . 7 𝐵 = (Base‘𝐴)
31, 2matrcl 21127 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 498 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
5 simpr 488 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ∈ Fin)
6 simpl 486 . . . . . . . 8 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → 𝑁 ≠ ∅)
75, 5, 63jca 1126 . . . . . . 7 ((𝑁 ≠ ∅ ∧ 𝑁 ∈ Fin) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
87ex 416 . . . . . 6 (𝑁 ≠ ∅ → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
98adantr 484 . . . . 5 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
104, 9syl5com 31 . . . 4 (𝑋𝐵 → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1110adantr 484 . . 3 ((𝑋𝐵𝑌𝑉) → ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅)))
1211impcom 411 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
13 simpr 488 . . 3 ((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
14 simpr 488 . . 3 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
1513, 14anim12i 615 . 2 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑌𝑉))
16 eqid 2759 . . 3 (Base‘𝑅) = (Base‘𝑅)
17 eqid 2759 . . 3 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
18 slesolex.v . . 3 𝑉 = ((Base‘𝑅) ↑m 𝑁)
19 slesolex.x . . 3 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
2016, 17, 18, 19, 18mavmulsolcl 21266 . 2 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ Ring ∧ 𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
2112, 15, 20syl2anc 587 1 (((𝑁 ≠ ∅ ∧ 𝑅 ∈ Ring) ∧ (𝑋𝐵𝑌𝑉)) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  Vcvv 3410  ∅c0 4228  ⟨cop 4532   × cxp 5527  ‘cfv 6341  (class class class)co 7157   ↑m cmap 8423  Fincfn 8541  Basecbs 16556  Ringcrg 19380   Mat cmat 21122   maVecMul cmvmul 21255 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5161  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303  ax-un 7466 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3700  df-csb 3809  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-iun 4889  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-1st 7700  df-2nd 7701  df-map 8425  df-slot 16560  df-base 16562  df-mat 21123  df-mvmul 21256 This theorem is referenced by:  slesolinv  21395  cramerimplem3  21400  cramerimp  21401  cramer  21406
 Copyright terms: Public domain W3C validator