![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slesolvec | Structured version Visualization version GIF version |
Description: Every solution of a system of linear equations represented by a matrix and a vector is a vector. (Contributed by AV, 10-Feb-2019.) (Revised by AV, 27-Feb-2019.) |
Ref | Expression |
---|---|
slesolex.a | โข ๐ด = (๐ Mat ๐ ) |
slesolex.b | โข ๐ต = (Baseโ๐ด) |
slesolex.v | โข ๐ = ((Baseโ๐ ) โm ๐) |
slesolex.x | โข ยท = (๐ maVecMul โจ๐, ๐โฉ) |
Ref | Expression |
---|---|
slesolvec | โข (((๐ โ โ โง ๐ โ Ring) โง (๐ โ ๐ต โง ๐ โ ๐)) โ ((๐ ยท ๐) = ๐ โ ๐ โ ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slesolex.a | . . . . . . 7 โข ๐ด = (๐ Mat ๐ ) | |
2 | slesolex.b | . . . . . . 7 โข ๐ต = (Baseโ๐ด) | |
3 | 1, 2 | matrcl 21903 | . . . . . 6 โข (๐ โ ๐ต โ (๐ โ Fin โง ๐ โ V)) |
4 | 3 | simpld 495 | . . . . 5 โข (๐ โ ๐ต โ ๐ โ Fin) |
5 | simpr 485 | . . . . . . . 8 โข ((๐ โ โ โง ๐ โ Fin) โ ๐ โ Fin) | |
6 | simpl 483 | . . . . . . . 8 โข ((๐ โ โ โง ๐ โ Fin) โ ๐ โ โ ) | |
7 | 5, 5, 6 | 3jca 1128 | . . . . . . 7 โข ((๐ โ โ โง ๐ โ Fin) โ (๐ โ Fin โง ๐ โ Fin โง ๐ โ โ )) |
8 | 7 | ex 413 | . . . . . 6 โข (๐ โ โ โ (๐ โ Fin โ (๐ โ Fin โง ๐ โ Fin โง ๐ โ โ ))) |
9 | 8 | adantr 481 | . . . . 5 โข ((๐ โ โ โง ๐ โ Ring) โ (๐ โ Fin โ (๐ โ Fin โง ๐ โ Fin โง ๐ โ โ ))) |
10 | 4, 9 | syl5com 31 | . . . 4 โข (๐ โ ๐ต โ ((๐ โ โ โง ๐ โ Ring) โ (๐ โ Fin โง ๐ โ Fin โง ๐ โ โ ))) |
11 | 10 | adantr 481 | . . 3 โข ((๐ โ ๐ต โง ๐ โ ๐) โ ((๐ โ โ โง ๐ โ Ring) โ (๐ โ Fin โง ๐ โ Fin โง ๐ โ โ ))) |
12 | 11 | impcom 408 | . 2 โข (((๐ โ โ โง ๐ โ Ring) โง (๐ โ ๐ต โง ๐ โ ๐)) โ (๐ โ Fin โง ๐ โ Fin โง ๐ โ โ )) |
13 | simpr 485 | . . 3 โข ((๐ โ โ โง ๐ โ Ring) โ ๐ โ Ring) | |
14 | simpr 485 | . . 3 โข ((๐ โ ๐ต โง ๐ โ ๐) โ ๐ โ ๐) | |
15 | 13, 14 | anim12i 613 | . 2 โข (((๐ โ โ โง ๐ โ Ring) โง (๐ โ ๐ต โง ๐ โ ๐)) โ (๐ โ Ring โง ๐ โ ๐)) |
16 | eqid 2732 | . . 3 โข (Baseโ๐ ) = (Baseโ๐ ) | |
17 | eqid 2732 | . . 3 โข ((Baseโ๐ ) โm (๐ ร ๐)) = ((Baseโ๐ ) โm (๐ ร ๐)) | |
18 | slesolex.v | . . 3 โข ๐ = ((Baseโ๐ ) โm ๐) | |
19 | slesolex.x | . . 3 โข ยท = (๐ maVecMul โจ๐, ๐โฉ) | |
20 | 16, 17, 18, 19, 18 | mavmulsolcl 22044 | . 2 โข (((๐ โ Fin โง ๐ โ Fin โง ๐ โ โ ) โง (๐ โ Ring โง ๐ โ ๐)) โ ((๐ ยท ๐) = ๐ โ ๐ โ ๐)) |
21 | 12, 15, 20 | syl2anc 584 | 1 โข (((๐ โ โ โง ๐ โ Ring) โง (๐ โ ๐ต โง ๐ โ ๐)) โ ((๐ ยท ๐) = ๐ โ ๐ โ ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 โ wne 2940 Vcvv 3474 โ c0 4321 โจcop 4633 ร cxp 5673 โcfv 6540 (class class class)co 7405 โm cmap 8816 Fincfn 8935 Basecbs 17140 Ringcrg 20049 Mat cmat 21898 maVecMul cmvmul 22033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-1cn 11164 ax-addcl 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8818 df-nn 12209 df-slot 17111 df-ndx 17123 df-base 17141 df-mat 21899 df-mvmul 22034 |
This theorem is referenced by: slesolinv 22173 cramerimplem3 22178 cramerimp 22179 cramer 22184 |
Copyright terms: Public domain | W3C validator |