Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meaxrcl Structured version   Visualization version   GIF version

Theorem meaxrcl 46432
Description: The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meaxrcl.1 (𝜑𝑀 ∈ Meas)
meaxrcl.2 𝑆 = dom 𝑀
meaxrcl.3 (𝜑𝐴𝑆)
Assertion
Ref Expression
meaxrcl (𝜑 → (𝑀𝐴) ∈ ℝ*)

Proof of Theorem meaxrcl
StepHypRef Expression
1 iccssxr 13404 . 2 (0[,]+∞) ⊆ ℝ*
2 meaxrcl.1 . . 3 (𝜑𝑀 ∈ Meas)
3 meaxrcl.2 . . 3 𝑆 = dom 𝑀
4 meaxrcl.3 . . 3 (𝜑𝐴𝑆)
52, 3, 4meacl 46429 . 2 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
61, 5sselid 3952 1 (𝜑 → (𝑀𝐴) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  dom cdm 5646  cfv 6519  (class class class)co 7394  0cc0 11086  +∞cpnf 11223  *cxr 11225  [,]cicc 13322  Meascmea 46420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-1st 7977  df-2nd 7978  df-xr 11230  df-icc 13326  df-mea 46421
This theorem is referenced by:  meassle  46434  meaunle  46435  meassre  46448  meale0eq0  46449  meaiuninclem  46451  meaiuninc3v  46455
  Copyright terms: Public domain W3C validator