Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > meassre | Structured version Visualization version GIF version |
Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meassre.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meassre.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
meassre.r | ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
meassre.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
meassre.b | ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
Ref | Expression |
---|---|
meassre | ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 12888 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 10726 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
4 | pnfxr 10733 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
6 | meassre.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | eqid 2758 | . . . 4 ⊢ dom 𝑀 = dom 𝑀 | |
8 | meassre.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) | |
9 | 6, 7, 8 | meaxrcl 43466 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ*) |
10 | 6, 8 | meage0 43480 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑀‘𝐵)) |
11 | meassre.r | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) | |
12 | 11 | rexrd 10729 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
13 | meassre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
14 | meassre.s | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
15 | 6, 7, 8, 13, 14 | meassle 43468 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ≤ (𝑀‘𝐴)) |
16 | 11 | ltpnfd 12557 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) < +∞) |
17 | 9, 12, 5, 15, 16 | xrlelttrd 12594 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) < +∞) |
18 | 3, 5, 9, 10, 17 | elicod 12829 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,)+∞)) |
19 | 1, 18 | sseldi 3890 | 1 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3858 dom cdm 5524 ‘cfv 6335 (class class class)co 7150 ℝcr 10574 0cc0 10575 +∞cpnf 10710 ℝ*cxr 10712 [,)cico 12781 Meascmea 43454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-inf2 9137 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-int 4839 df-iun 4885 df-disj 4998 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-se 5484 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-isom 6344 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-oi 9007 df-card 9401 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-n0 11935 df-z 12021 df-uz 12283 df-rp 12431 df-xadd 12549 df-ico 12785 df-icc 12786 df-fz 12940 df-fzo 13083 df-seq 13419 df-exp 13480 df-hash 13741 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-clim 14893 df-sum 15091 df-salg 43317 df-sumge0 43368 df-mea 43455 |
This theorem is referenced by: meadif 43484 meaiininclem 43491 vonioolem2 43686 |
Copyright terms: Public domain | W3C validator |