Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meassre Structured version   Visualization version   GIF version

Theorem meassre 45746
Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
meassre.m (𝜑𝑀 ∈ Meas)
meassre.a (𝜑𝐴 ∈ dom 𝑀)
meassre.r (𝜑 → (𝑀𝐴) ∈ ℝ)
meassre.s (𝜑𝐵𝐴)
meassre.b (𝜑𝐵 ∈ dom 𝑀)
Assertion
Ref Expression
meassre (𝜑 → (𝑀𝐵) ∈ ℝ)

Proof of Theorem meassre
StepHypRef Expression
1 rge0ssre 13436 . 2 (0[,)+∞) ⊆ ℝ
2 0xr 11262 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 (𝜑 → 0 ∈ ℝ*)
4 pnfxr 11269 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
6 meassre.m . . . 4 (𝜑𝑀 ∈ Meas)
7 eqid 2726 . . . 4 dom 𝑀 = dom 𝑀
8 meassre.b . . . 4 (𝜑𝐵 ∈ dom 𝑀)
96, 7, 8meaxrcl 45730 . . 3 (𝜑 → (𝑀𝐵) ∈ ℝ*)
106, 8meage0 45744 . . 3 (𝜑 → 0 ≤ (𝑀𝐵))
11 meassre.r . . . . 5 (𝜑 → (𝑀𝐴) ∈ ℝ)
1211rexrd 11265 . . . 4 (𝜑 → (𝑀𝐴) ∈ ℝ*)
13 meassre.a . . . . 5 (𝜑𝐴 ∈ dom 𝑀)
14 meassre.s . . . . 5 (𝜑𝐵𝐴)
156, 7, 8, 13, 14meassle 45732 . . . 4 (𝜑 → (𝑀𝐵) ≤ (𝑀𝐴))
1611ltpnfd 13104 . . . 4 (𝜑 → (𝑀𝐴) < +∞)
179, 12, 5, 15, 16xrlelttrd 13142 . . 3 (𝜑 → (𝑀𝐵) < +∞)
183, 5, 9, 10, 17elicod 13377 . 2 (𝜑 → (𝑀𝐵) ∈ (0[,)+∞))
191, 18sselid 3975 1 (𝜑 → (𝑀𝐵) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wss 3943  dom cdm 5669  cfv 6536  (class class class)co 7404  cr 11108  0cc0 11109  +∞cpnf 11246  *cxr 11248  [,)cico 13329  Meascmea 45718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-disj 5107  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-rp 12978  df-xadd 13096  df-ico 13333  df-icc 13334  df-fz 13488  df-fzo 13631  df-seq 13970  df-exp 14031  df-hash 14294  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-sum 15637  df-salg 45578  df-sumge0 45632  df-mea 45719
This theorem is referenced by:  meadif  45748  meaiininclem  45755  vonioolem2  45950
  Copyright terms: Public domain W3C validator