| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > meassre | Structured version Visualization version GIF version | ||
| Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| meassre.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
| meassre.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
| meassre.r | ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
| meassre.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| meassre.b | ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
| Ref | Expression |
|---|---|
| meassre | ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre 13417 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
| 2 | 0xr 11221 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 4 | pnfxr 11228 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 6 | meassre.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
| 7 | eqid 2729 | . . . 4 ⊢ dom 𝑀 = dom 𝑀 | |
| 8 | meassre.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) | |
| 9 | 6, 7, 8 | meaxrcl 46459 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ*) |
| 10 | 6, 8 | meage0 46473 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑀‘𝐵)) |
| 11 | meassre.r | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) | |
| 12 | 11 | rexrd 11224 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
| 13 | meassre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
| 14 | meassre.s | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 15 | 6, 7, 8, 13, 14 | meassle 46461 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ≤ (𝑀‘𝐴)) |
| 16 | 11 | ltpnfd 13081 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) < +∞) |
| 17 | 9, 12, 5, 15, 16 | xrlelttrd 13120 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) < +∞) |
| 18 | 3, 5, 9, 10, 17 | elicod 13356 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,)+∞)) |
| 19 | 1, 18 | sselid 3944 | 1 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 [,)cico 13308 Meascmea 46447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-xadd 13073 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-salg 46307 df-sumge0 46361 df-mea 46448 |
| This theorem is referenced by: meadif 46477 meaiininclem 46484 vonioolem2 46679 |
| Copyright terms: Public domain | W3C validator |