![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > meassre | Structured version Visualization version GIF version |
Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
meassre.m | ⊢ (𝜑 → 𝑀 ∈ Meas) |
meassre.a | ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) |
meassre.r | ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) |
meassre.s | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
meassre.b | ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) |
Ref | Expression |
---|---|
meassre | ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 13429 | . 2 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | 0xr 11257 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ*) |
4 | pnfxr 11264 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ (𝜑 → +∞ ∈ ℝ*) |
6 | meassre.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Meas) | |
7 | eqid 2732 | . . . 4 ⊢ dom 𝑀 = dom 𝑀 | |
8 | meassre.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) | |
9 | 6, 7, 8 | meaxrcl 45163 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ*) |
10 | 6, 8 | meage0 45177 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑀‘𝐵)) |
11 | meassre.r | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) | |
12 | 11 | rexrd 11260 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
13 | meassre.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) | |
14 | meassre.s | . . . . 5 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
15 | 6, 7, 8, 13, 14 | meassle 45165 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐵) ≤ (𝑀‘𝐴)) |
16 | 11 | ltpnfd 13097 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) < +∞) |
17 | 9, 12, 5, 15, 16 | xrlelttrd 13135 | . . 3 ⊢ (𝜑 → (𝑀‘𝐵) < +∞) |
18 | 3, 5, 9, 10, 17 | elicod 13370 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,)+∞)) |
19 | 1, 18 | sselid 3979 | 1 ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3947 dom cdm 5675 ‘cfv 6540 (class class class)co 7405 ℝcr 11105 0cc0 11106 +∞cpnf 11241 ℝ*cxr 11243 [,)cico 13322 Meascmea 45151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-xadd 13089 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-salg 45011 df-sumge0 45065 df-mea 45152 |
This theorem is referenced by: meadif 45181 meaiininclem 45188 vonioolem2 45383 |
Copyright terms: Public domain | W3C validator |