Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem6 Structured version   Visualization version   GIF version

Theorem pellexlem6 42829
Description: Lemma for pellex 42830. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Hypotheses
Ref Expression
pellex.ann (𝜑𝐴 ∈ ℕ)
pellex.bnn (𝜑𝐵 ∈ ℕ)
pellex.cz (𝜑𝐶 ∈ ℤ)
pellex.dnn (𝜑𝐷 ∈ ℕ)
pellex.irr (𝜑 → ¬ (√‘𝐷) ∈ ℚ)
pellex.enn (𝜑𝐸 ∈ ℕ)
pellex.fnn (𝜑𝐹 ∈ ℕ)
pellex.neq (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
pellex.cn0 (𝜑𝐶 ≠ 0)
pellex.no1 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
pellex.no2 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
pellex.xcg (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
pellex.ycg (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
Assertion
Ref Expression
pellexlem6 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem pellexlem6
StepHypRef Expression
1 pellex.ann . . . . . . . . 9 (𝜑𝐴 ∈ ℕ)
21nncnd 12209 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 pellex.enn . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
43nncnd 12209 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
52, 4mulcld 11201 . . . . . . 7 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
6 pellex.dnn . . . . . . . . 9 (𝜑𝐷 ∈ ℕ)
76nncnd 12209 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
8 pellex.bnn . . . . . . . . . 10 (𝜑𝐵 ∈ ℕ)
98nncnd 12209 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
10 pellex.fnn . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ)
1110nncnd 12209 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
129, 11mulcld 11201 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
137, 12mulcld 11201 . . . . . . 7 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℂ)
145, 13subcld 11540 . . . . . 6 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
15 pellex.cz . . . . . . 7 (𝜑𝐶 ∈ ℤ)
1615zcnd 12646 . . . . . 6 (𝜑𝐶 ∈ ℂ)
17 pellex.cn0 . . . . . 6 (𝜑𝐶 ≠ 0)
1814, 16, 17absdivd 15431 . . . . 5 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)))
195, 13negsubd 11546 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))))
2019eqcomd 2736 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))))
2120oveq1d 7405 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
221nnred 12208 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
233nnred 12208 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
2422, 23remulcld 11211 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐸) ∈ ℝ)
256nnred 12208 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
268nnred 12208 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2710nnred 12208 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℝ)
2826, 27remulcld 11211 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝐹) ∈ ℝ)
2925, 28remulcld 11211 . . . . . . . . . 10 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3029renegcld 11612 . . . . . . . . . 10 (𝜑 → -(𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3116, 17absrpcld 15424 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ+)
323nnzd 12563 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℤ)
33 pellex.xcg . . . . . . . . . . . 12 (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
34 modmul1 13896 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
3522, 23, 32, 31, 33, 34syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
364sqcld 14116 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸↑2) ∈ ℂ)
3711sqcld 14116 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹↑2) ∈ ℂ)
387, 37mulcld 11201 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℂ)
3936, 38npcand 11544 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) = (𝐸↑2))
404sqvald 14115 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
4139, 40eqtr2d 2766 . . . . . . . . . . . . 13 (𝜑 → (𝐸 · 𝐸) = (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))))
4241oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
4323resqcld 14097 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) ∈ ℝ)
4427resqcld 14097 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) ∈ ℝ)
4525, 44remulcld 11211 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℝ)
4643, 45resubcld 11613 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ)
47 0red 11184 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
4816abscld 15412 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
4948recnd 11209 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ∈ ℂ)
5016, 17absne0d 15423 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ≠ 0)
5149, 50dividd 11963 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) = 1)
52 1zzd 12571 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
5351, 52eqeltrd 2829 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ)
54 mod0 13845 . . . . . . . . . . . . . . . . 17 (((abs‘𝐶) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5548, 31, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5653, 55mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) mod (abs‘𝐶)) = 0)
5715zred 12645 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ)
58 absmod0 15276 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
5957, 31, 58syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
6056, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 mod (abs‘𝐶)) = 0)
61 pellex.no2 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
6261oveq1d 7405 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (𝐶 mod (abs‘𝐶)))
63 0mod 13871 . . . . . . . . . . . . . . 15 ((abs‘𝐶) ∈ ℝ+ → (0 mod (abs‘𝐶)) = 0)
6431, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0 mod (abs‘𝐶)) = 0)
6560, 62, 643eqtr4d 2775 . . . . . . . . . . . . 13 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
66 modadd1 13877 . . . . . . . . . . . . 13 (((((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ ∧ 0 ∈ ℝ) ∧ ((𝐷 · (𝐹↑2)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶))) → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6746, 47, 45, 31, 65, 66syl221anc 1383 . . . . . . . . . . . 12 (𝜑 → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6838addlidd 11382 . . . . . . . . . . . . . 14 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐷 · (𝐹↑2)))
6911sqvald 14115 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) = (𝐹 · 𝐹))
7069oveq2d 7406 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) = (𝐷 · (𝐹 · 𝐹)))
717, 11, 11mul12d 11390 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹 · 𝐹)) = (𝐹 · (𝐷 · 𝐹)))
7268, 70, 713eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐹 · (𝐷 · 𝐹)))
7372oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
7442, 67, 733eqtrd 2769 . . . . . . . . . . 11 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
756nnzd 12563 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℤ)
7610nnzd 12563 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℤ)
7775, 76zmulcld 12651 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · 𝐹) ∈ ℤ)
78 pellex.ycg . . . . . . . . . . . . . 14 (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
7978eqcomd 2736 . . . . . . . . . . . . 13 (𝜑 → (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶)))
80 modmul1 13896 . . . . . . . . . . . . 13 (((𝐹 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐷 · 𝐹) ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶))) → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
8127, 26, 77, 31, 79, 80syl221anc 1383 . . . . . . . . . . . 12 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
829, 7, 11mul12d 11390 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · (𝐷 · 𝐹)) = (𝐷 · (𝐵 · 𝐹)))
8382oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8481, 83eqtrd 2765 . . . . . . . . . . 11 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8535, 74, 843eqtrd 2769 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
86 modadd1 13877 . . . . . . . . . 10 ((((𝐴 · 𝐸) ∈ ℝ ∧ (𝐷 · (𝐵 · 𝐹)) ∈ ℝ) ∧ (-(𝐷 · (𝐵 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶))) → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8724, 29, 30, 31, 85, 86syl221anc 1383 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8813negidd 11530 . . . . . . . . . 10 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) = 0)
8988oveq1d 7405 . . . . . . . . 9 (𝜑 → (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9021, 87, 893eqtrd 2769 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9190, 64eqtrd 2765 . . . . . . 7 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0)
9224, 29resubcld 11613 . . . . . . . 8 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ)
93 absmod0 15276 . . . . . . . 8 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9492, 31, 93syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9591, 94mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0)
9614abscld 15412 . . . . . . 7 (𝜑 → (abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ)
97 mod0 13845 . . . . . . 7 (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9896, 31, 97syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9995, 98mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ)
10018, 99eqeltrd 2829 . . . 4 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ)
10192, 57, 17redivcld 12017 . . . . 5 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ)
102 absz 15284 . . . . 5 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
103101, 102syl 17 . . . 4 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
104100, 103mpbird 257 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ)
105 0lt1 11707 . . . . . . . 8 0 < 1
106 0re 11183 . . . . . . . . 9 0 ∈ ℝ
107 1re 11181 . . . . . . . . 9 1 ∈ ℝ
108106, 107ltnlei 11302 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
109105, 108mpbi 230 . . . . . . 7 ¬ 1 ≤ 0
1109, 4mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 𝐸) ∈ ℂ)
1112, 11mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐹) ∈ ℂ)
112110, 111subcld 11540 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℂ)
113112, 16, 17divcld 11965 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℂ)
114113abscld 15412 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℝ)
115114resqcld 14097 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) ∈ ℝ)
1166nnnn0d 12510 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
117116nn0ge0d 12513 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
118114sqge0d 14109 . . . . . . . . . 10 (𝜑 → 0 ≤ ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
11925, 115, 117, 118mulge0d 11762 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
12025, 115remulcld 11211 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) ∈ ℝ)
12147, 120suble0d 11776 . . . . . . . . 9 (𝜑 → ((0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0 ↔ 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
122119, 121mpbird 257 . . . . . . . 8 (𝜑 → (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0)
123 breq1 5113 . . . . . . . 8 (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → (1 ≤ 0 ↔ (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0))
124122, 123syl5ibrcom 247 . . . . . . 7 (𝜑 → (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → 1 ≤ 0))
125109, 124mtoi 199 . . . . . 6 (𝜑 → ¬ 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
126 absresq 15275 . . . . . . . . . . . 12 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
127101, 126syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
12814, 16, 17sqdivd 14131 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)))
12914sqvald 14115 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) = (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))))
130129oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
131127, 128, 1303eqtrd 2769 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
13226, 23remulcld 11211 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 · 𝐸) ∈ ℝ)
13322, 27remulcld 11211 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 · 𝐹) ∈ ℝ)
134132, 133resubcld 11613 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ)
135134, 57, 17redivcld 12017 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ)
136 absresq 15275 . . . . . . . . . . . . . 14 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
137135, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
138112, 16, 17sqdivd 14131 . . . . . . . . . . . . 13 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
139137, 138eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
140139oveq2d 7406 . . . . . . . . . . 11 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
141112sqcld 14116 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) ∈ ℂ)
14216sqcld 14116 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℂ)
143 sqne0 14095 . . . . . . . . . . . . . 14 (𝐶 ∈ ℂ → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14416, 143syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14517, 144mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ≠ 0)
1467, 141, 142, 145divassd 12000 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
147112sqvald 14115 . . . . . . . . . . . . 13 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) = (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))
148147oveq2d 7406 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) = (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))))
149148oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
150140, 146, 1493eqtr2d 2771 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
151131, 150oveq12d 7408 . . . . . . . . 9 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
15214, 14mulcld 11201 . . . . . . . . . 10 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
153112, 112mulcld 11201 . . . . . . . . . . 11 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℂ)
1547, 153mulcld 11201 . . . . . . . . . 10 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) ∈ ℂ)
155152, 154, 142, 145divsubdird 12004 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
1565, 13, 5, 13mulsubd 11644 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))))
157110, 111, 110, 111mulsubd 11644 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) = ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
158157oveq2d 7406 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
159110, 110mulcld 11201 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐵 · 𝐸)) ∈ ℂ)
160111, 111mulcld 11201 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐹) · (𝐴 · 𝐹)) ∈ ℂ)
161159, 160addcld 11200 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
162110, 111mulcld 11201 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐴 · 𝐹)) ∈ ℂ)
163162, 162addcld 11200 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
1647, 161, 163subdid 11641 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
1657, 159, 160adddid 11205 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
1667, 162, 162adddid 11205 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
167165, 166oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
168158, 164, 1673eqtrd 2769 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
169156, 168oveq12d 7408 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
170169oveq1d 7405 . . . . . . . . . 10 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)))
1715, 13mulcomd 11202 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)))
1727, 12, 5mulassd 11204 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)) = (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))))
1732, 4mulcomd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 · 𝐸) = (𝐸 · 𝐴))
174173oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐹) · (𝐸 · 𝐴)))
1759, 11, 4, 2mul4d 11393 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐸 · 𝐴)) = ((𝐵 · 𝐸) · (𝐹 · 𝐴)))
17611, 2mulcomd 11202 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 · 𝐴) = (𝐴 · 𝐹))
177176oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸) · (𝐹 · 𝐴)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
178174, 175, 1773eqtrd 2769 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
179178oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
180171, 172, 1793eqtrd 2769 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
181180, 180oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
182181oveq2d 7406 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
183182oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
1845, 5mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐸) · (𝐴 · 𝐸)) ∈ ℂ)
18513, 13mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
186184, 185addcld 11200 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
1877, 159mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) ∈ ℂ)
1887, 160mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
189187, 188addcld 11200 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) ∈ ℂ)
1907, 162mulcld 11201 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
191190, 190addcld 11200 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) ∈ ℂ)
192186, 189, 191nnncan2d 11575 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
193184, 185, 187, 188addsub4d 11587 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
1945sqvald 14115 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴 · 𝐸) · (𝐴 · 𝐸)))
195110sqvald 14115 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵 · 𝐸) · (𝐵 · 𝐸)))
196195oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))))
197194, 196oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))))
19813sqvald 14115 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))))
199111sqvald 14115 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴 · 𝐹) · (𝐴 · 𝐹)))
200199oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))
201198, 200oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
202197, 201oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
2032, 4sqmuld 14130 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴↑2) · (𝐸↑2)))
2049, 4sqmuld 14130 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵↑2) · (𝐸↑2)))
205204oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
2069sqcld 14116 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵↑2) ∈ ℂ)
2077, 206, 36mulassd 11204 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵↑2)) · (𝐸↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
208205, 207eqtr4d 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = ((𝐷 · (𝐵↑2)) · (𝐸↑2)))
209203, 208oveq12d 7408 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
2107sqvald 14115 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷↑2) = (𝐷 · 𝐷))
2119, 11sqmuld 14130 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹)↑2) = ((𝐵↑2) · (𝐹↑2)))
212210, 211oveq12d 7408 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷↑2) · ((𝐵 · 𝐹)↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
2137, 12sqmuld 14130 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷↑2) · ((𝐵 · 𝐹)↑2)))
2147, 7mulcld 11201 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐷) ∈ ℂ)
215214, 206, 37mulassd 11204 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
216212, 213, 2153eqtr4d 2775 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)))
2172, 11sqmuld 14130 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴↑2) · (𝐹↑2)))
218217oveq2d 7406 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
2192sqcld 14116 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴↑2) ∈ ℂ)
2207, 219, 37mulassd 11204 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐴↑2)) · (𝐹↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
221218, 220eqtr4d 2768 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = ((𝐷 · (𝐴↑2)) · (𝐹↑2)))
222216, 221oveq12d 7408 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
223209, 222oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))))
2247, 206mulcld 11201 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐵↑2)) ∈ ℂ)
225219, 224, 36subdird 11642 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
226 pellex.no1 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
227226oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (𝐶 · (𝐸↑2)))
228225, 227eqtr3d 2767 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) = (𝐶 · (𝐸↑2)))
2297, 7, 206mulassd 11204 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) = (𝐷 · (𝐷 · (𝐵↑2))))
230229oveq1d 7405 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
231230oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)))
232214, 206mulcld 11201 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) ∈ ℂ)
2337, 219mulcld 11201 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐴↑2)) ∈ ℂ)
234232, 233, 37subdird 11642 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
235 subdi 11618 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
236235eqcomd 2736 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
2377, 224, 219, 236syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
238 negsubdi2 11488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐷 · (𝐵↑2)) − (𝐴↑2)))
239238eqcomd 2736 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
240219, 224, 239syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
241226negeqd 11422 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = -𝐶)
242240, 241eqtrd 2765 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -𝐶)
243242oveq2d 7406 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = (𝐷 · -𝐶))
2447, 16mulneg2d 11639 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · -𝐶) = -(𝐷 · 𝐶))
245237, 243, 2443eqtrd 2769 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = -(𝐷 · 𝐶))
246245oveq1d 7405 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (-(𝐷 · 𝐶) · (𝐹↑2)))
247231, 234, 2463eqtr3d 2773 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))) = (-(𝐷 · 𝐶) · (𝐹↑2)))
248228, 247oveq12d 7408 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))))
2497, 16mulcld 11201 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
250249, 37mulneg1d 11638 . . . . . . . . . . . . . . . . 17 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -((𝐷 · 𝐶) · (𝐹↑2)))
2517, 16mulcomd 11202 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐷 · 𝐶) = (𝐶 · 𝐷))
252251oveq1d 7405 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = ((𝐶 · 𝐷) · (𝐹↑2)))
25316, 7, 37mulassd 11204 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐶 · 𝐷) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
254252, 253eqtrd 2765 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
255254negeqd 11422 . . . . . . . . . . . . . . . . 17 (𝜑 → -((𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
256250, 255eqtrd 2765 . . . . . . . . . . . . . . . 16 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
257256oveq2d 7406 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))))
25816, 36mulcld 11201 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐸↑2)) ∈ ℂ)
25916, 38mulcld 11201 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐷 · (𝐹↑2))) ∈ ℂ)
260258, 259negsubd 11546 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
26161oveq2d 7406 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = (𝐶 · 𝐶))
262 subdi 11618 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
263262eqcomd 2736 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26416, 36, 38, 263syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26516sqvald 14115 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) = (𝐶 · 𝐶))
266261, 264, 2653eqtr4d 2775 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶↑2))
267257, 260, 2663eqtrd 2769 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = (𝐶↑2))
268223, 248, 2673eqtrd 2769 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = (𝐶↑2))
269193, 202, 2683eqtr2d 2771 . . . . . . . . . . . 12 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = (𝐶↑2))
270183, 192, 2693eqtrd 2769 . . . . . . . . . . 11 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (𝐶↑2))
271270oveq1d 7405 . . . . . . . . . 10 (𝜑 → ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)) = ((𝐶↑2) / (𝐶↑2)))
272142, 145dividd 11963 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) / (𝐶↑2)) = 1)
273170, 271, 2723eqtrd 2769 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = 1)
274151, 155, 2733eqtr2d 2771 . . . . . . . 8 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
275274adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
276 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
277276fvoveq1d 7412 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = (abs‘(0 / 𝐶)))
27816, 17div0d 11964 . . . . . . . . . . . 12 (𝜑 → (0 / 𝐶) = 0)
279278abs00bd 15264 . . . . . . . . . . 11 (𝜑 → (abs‘(0 / 𝐶)) = 0)
280279adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(0 / 𝐶)) = 0)
281277, 280eqtrd 2765 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = 0)
282281sq0id 14166 . . . . . . . 8 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = 0)
283282oveq1d 7405 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
284275, 283eqtr3d 2767 . . . . . 6 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
285125, 284mtand 815 . . . . 5 (𝜑 → ¬ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
286285neqned 2933 . . . 4 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ≠ 0)
28714, 16, 286, 17divne0d 11981 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0)
288 nnabscl 15299 . . 3 (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ∧ (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
289104, 287, 288syl2anc 584 . 2 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
290112, 16, 17absdivd 15431 . . . . 5 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) = ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)))
291 negsub 11477 . . . . . . . . . . . 12 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) + -(𝐴 · 𝐹)) = ((𝐵 · 𝐸) − (𝐴 · 𝐹)))
292291eqcomd 2736 . . . . . . . . . . 11 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
293110, 111, 292syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
294293oveq1d 7405 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
295133renegcld 11612 . . . . . . . . . 10 (𝜑 → -(𝐴 · 𝐹) ∈ ℝ)
29611, 4mulcomd 11202 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝐸) = (𝐸 · 𝐹))
297296oveq1d 7405 . . . . . . . . . . 11 (𝜑 → ((𝐹 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
298 modmul1 13896 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝐹 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
29926, 27, 32, 31, 78, 298syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
300 modmul1 13896 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐹 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
30122, 23, 76, 31, 33, 300syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
302297, 299, 3013eqtr4d 2775 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶)))
303 modadd1 13877 . . . . . . . . . 10 ((((𝐵 · 𝐸) ∈ ℝ ∧ (𝐴 · 𝐹) ∈ ℝ) ∧ (-(𝐴 · 𝐹) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶))) → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
304132, 133, 295, 31, 302, 303syl221anc 1383 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
305111negidd 11530 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐹) + -(𝐴 · 𝐹)) = 0)
306305oveq1d 7405 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
307294, 304, 3063eqtrd 2769 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
308307, 64eqtrd 2765 . . . . . . 7 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0)
309 absmod0 15276 . . . . . . . 8 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
310134, 31, 309syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
311308, 310mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0)
312112abscld 15412 . . . . . . 7 (𝜑 → (abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ)
313 mod0 13845 . . . . . . 7 (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
314312, 31, 313syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
315311, 314mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ)
316290, 315eqeltrd 2829 . . . 4 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ)
317 absz 15284 . . . . 5 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
318135, 317syl 17 . . . 4 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
319316, 318mpbird 257 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ)
320 pellex.neq . . . . . . 7 (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
32110nnne0d 12243 . . . . . . . . 9 (𝜑𝐹 ≠ 0)
3223nnne0d 12243 . . . . . . . . 9 (𝜑𝐸 ≠ 0)
3239, 11, 2, 4, 321, 322divmuleqd 12011 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) ↔ (𝐵 · 𝐸) = (𝐴 · 𝐹)))
32461adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
325324eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐸↑2) − (𝐷 · (𝐹↑2))))
326325oveq2d 7406 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
3279, 11, 321divcld 11965 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℂ)
328327sqcld 14116 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹)↑2) ∈ ℂ)
329328adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) ∈ ℂ)
33036adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ∈ ℂ)
33138adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (𝐹↑2)) ∈ ℂ)
332329, 330, 331subdid 11641 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))))
333 oveq1 7397 . . . . . . . . . . . . . . . . 17 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → ((𝐵 / 𝐹)↑2) = ((𝐴 / 𝐸)↑2))
334333oveq1d 7405 . . . . . . . . . . . . . . . 16 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
335334adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
3362adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐴 ∈ ℂ)
3374adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ∈ ℂ)
338322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ≠ 0)
339336, 337, 338sqdivd 14131 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐴 / 𝐸)↑2) = ((𝐴↑2) / (𝐸↑2)))
340339oveq1d 7405 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴 / 𝐸)↑2) · (𝐸↑2)) = (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)))
341219adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴↑2) ∈ ℂ)
342 sqne0 14095 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ ℂ → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
3434, 342syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
344322, 343mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸↑2) ≠ 0)
345344adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ≠ 0)
346341, 330, 345divcan1d 11966 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)) = (𝐴↑2))
347335, 340, 3463eqtrd 2769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (𝐴↑2))
3487adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐷 ∈ ℂ)
34937adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ∈ ℂ)
350329, 348, 349mul12d 11390 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))))
3519adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐵 ∈ ℂ)
35211adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ∈ ℂ)
353321adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ≠ 0)
354351, 352, 353sqdivd 14131 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = ((𝐵↑2) / (𝐹↑2)))
355354oveq1d 7405 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐹↑2)) = (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)))
356355oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))) = (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))))
357206adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐵↑2) ∈ ℂ)
358 sqne0 14095 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℂ → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
35911, 358syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
360321, 359mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹↑2) ≠ 0)
361360adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ≠ 0)
362357, 349, 361divcan1d 11966 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)) = (𝐵↑2))
363362oveq2d 7406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
364350, 356, 3633eqtrd 2769 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
365347, 364oveq12d 7408 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
366326, 332, 3653eqtrd 2769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
367226eqcomd 2736 . . . . . . . . . . . . 13 (𝜑𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
368367adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
369366, 368oveq12d 7408 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
37016adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ∈ ℂ)
37117adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ≠ 0)
372329, 370, 371divcan4d 11971 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = ((𝐵 / 𝐹)↑2))
373226, 226oveq12d 7408 . . . . . . . . . . . . 13 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = (𝐶 / 𝐶))
37416, 17dividd 11963 . . . . . . . . . . . . 13 (𝜑 → (𝐶 / 𝐶) = 1)
375373, 374eqtrd 2765 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
376375adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
377369, 372, 3763eqtr3d 2773 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = 1)
37826, 27, 321redivcld 12017 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℝ)
3798nnnn0d 12510 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℕ0)
380379nn0ge0d 12513 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐵)
38110nngt0d 12242 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐹)
382 divge0 12059 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐹 ∈ ℝ ∧ 0 < 𝐹)) → 0 ≤ (𝐵 / 𝐹))
38326, 380, 27, 381, 382syl22anc 838 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (𝐵 / 𝐹))
384378, 383sqrtsqd 15393 . . . . . . . . . . . . . . 15 (𝜑 → (√‘((𝐵 / 𝐹)↑2)) = (𝐵 / 𝐹))
385384eqcomd 2736 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
386385ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
387 fveq2 6861 . . . . . . . . . . . . . 14 (((𝐵 / 𝐹)↑2) = 1 → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
388387adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
389 sqrt1 15244 . . . . . . . . . . . . . 14 (√‘1) = 1
390389a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘1) = 1)
391386, 388, 3903eqtrd 2769 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = 1)
392391ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐵 / 𝐹) = 1))
393 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = (𝐴 / 𝐸))
394 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = 1)
395393, 394eqtr3d 2767 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 / 𝐸) = 1)
396395oveq1d 7405 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = (1 · 𝐸))
3972, 4, 322divcan1d 11966 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
398397ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
3994mullidd 11199 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐸) = 𝐸)
400399ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐸) = 𝐸)
401396, 398, 4003eqtr3d 2773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐴 = 𝐸)
402394oveq1d 7405 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = (1 · 𝐹))
4039, 11, 321divcan1d 11966 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
404403ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
40511mullidd 11199 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐹) = 𝐹)
406405ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐹) = 𝐹)
407402, 404, 4063eqtr3d 2773 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐵 = 𝐹)
408401, 407jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 = 𝐸𝐵 = 𝐹))
409408ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
410392, 409syld 47 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
411377, 410mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴 = 𝐸𝐵 = 𝐹))
412411ex 412 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (𝐴 = 𝐸𝐵 = 𝐹)))
413323, 412sylbird 260 . . . . . . 7 (𝜑 → ((𝐵 · 𝐸) = (𝐴 · 𝐹) → (𝐴 = 𝐸𝐵 = 𝐹)))
414320, 413mtod 198 . . . . . 6 (𝜑 → ¬ (𝐵 · 𝐸) = (𝐴 · 𝐹))
415414neqned 2933 . . . . 5 (𝜑 → (𝐵 · 𝐸) ≠ (𝐴 · 𝐹))
416110, 111, 415subne0d 11549 . . . 4 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ≠ 0)
417112, 16, 416, 17divne0d 11981 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0)
418 nnabscl 15299 . . 3 (((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ∧ (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0) → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
419319, 417, 418syl2anc 584 . 2 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
420 oveq1 7397 . . . . 5 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (𝑎↑2) = ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2))
421420oveq1d 7405 . . . 4 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))))
422421eqeq1d 2732 . . 3 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1))
423 oveq1 7397 . . . . . 6 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝑏↑2) = ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
424423oveq2d 7406 . . . . 5 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝐷 · (𝑏↑2)) = (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
425424oveq2d 7406 . . . 4 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
426425eqeq1d 2732 . . 3 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → ((((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1))
427422, 426rspc2ev 3604 . 2 (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ ∧ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ ∧ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
428289, 419, 274, 427syl3anc 1373 1 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  cz 12536  cq 12914  +crp 12958   mod cmo 13838  cexp 14033  csqrt 15206  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  pellex  42830
  Copyright terms: Public domain W3C validator