Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem6 Structured version   Visualization version   GIF version

Theorem pellexlem6 42815
Description: Lemma for pellex 42816. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Hypotheses
Ref Expression
pellex.ann (𝜑𝐴 ∈ ℕ)
pellex.bnn (𝜑𝐵 ∈ ℕ)
pellex.cz (𝜑𝐶 ∈ ℤ)
pellex.dnn (𝜑𝐷 ∈ ℕ)
pellex.irr (𝜑 → ¬ (√‘𝐷) ∈ ℚ)
pellex.enn (𝜑𝐸 ∈ ℕ)
pellex.fnn (𝜑𝐹 ∈ ℕ)
pellex.neq (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
pellex.cn0 (𝜑𝐶 ≠ 0)
pellex.no1 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
pellex.no2 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
pellex.xcg (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
pellex.ycg (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
Assertion
Ref Expression
pellexlem6 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem pellexlem6
StepHypRef Expression
1 pellex.ann . . . . . . . . 9 (𝜑𝐴 ∈ ℕ)
21nncnd 12178 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 pellex.enn . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
43nncnd 12178 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
52, 4mulcld 11170 . . . . . . 7 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
6 pellex.dnn . . . . . . . . 9 (𝜑𝐷 ∈ ℕ)
76nncnd 12178 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
8 pellex.bnn . . . . . . . . . 10 (𝜑𝐵 ∈ ℕ)
98nncnd 12178 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
10 pellex.fnn . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ)
1110nncnd 12178 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
129, 11mulcld 11170 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
137, 12mulcld 11170 . . . . . . 7 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℂ)
145, 13subcld 11509 . . . . . 6 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
15 pellex.cz . . . . . . 7 (𝜑𝐶 ∈ ℤ)
1615zcnd 12615 . . . . . 6 (𝜑𝐶 ∈ ℂ)
17 pellex.cn0 . . . . . 6 (𝜑𝐶 ≠ 0)
1814, 16, 17absdivd 15400 . . . . 5 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)))
195, 13negsubd 11515 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))))
2019eqcomd 2735 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))))
2120oveq1d 7384 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
221nnred 12177 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
233nnred 12177 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
2422, 23remulcld 11180 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐸) ∈ ℝ)
256nnred 12177 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
268nnred 12177 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2710nnred 12177 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℝ)
2826, 27remulcld 11180 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝐹) ∈ ℝ)
2925, 28remulcld 11180 . . . . . . . . . 10 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3029renegcld 11581 . . . . . . . . . 10 (𝜑 → -(𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3116, 17absrpcld 15393 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ+)
323nnzd 12532 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℤ)
33 pellex.xcg . . . . . . . . . . . 12 (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
34 modmul1 13865 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
3522, 23, 32, 31, 33, 34syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
364sqcld 14085 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸↑2) ∈ ℂ)
3711sqcld 14085 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹↑2) ∈ ℂ)
387, 37mulcld 11170 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℂ)
3936, 38npcand 11513 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) = (𝐸↑2))
404sqvald 14084 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
4139, 40eqtr2d 2765 . . . . . . . . . . . . 13 (𝜑 → (𝐸 · 𝐸) = (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))))
4241oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
4323resqcld 14066 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) ∈ ℝ)
4427resqcld 14066 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) ∈ ℝ)
4525, 44remulcld 11180 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℝ)
4643, 45resubcld 11582 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ)
47 0red 11153 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
4816abscld 15381 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
4948recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ∈ ℂ)
5016, 17absne0d 15392 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ≠ 0)
5149, 50dividd 11932 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) = 1)
52 1zzd 12540 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
5351, 52eqeltrd 2828 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ)
54 mod0 13814 . . . . . . . . . . . . . . . . 17 (((abs‘𝐶) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5548, 31, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5653, 55mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) mod (abs‘𝐶)) = 0)
5715zred 12614 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ)
58 absmod0 15245 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
5957, 31, 58syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
6056, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 mod (abs‘𝐶)) = 0)
61 pellex.no2 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
6261oveq1d 7384 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (𝐶 mod (abs‘𝐶)))
63 0mod 13840 . . . . . . . . . . . . . . 15 ((abs‘𝐶) ∈ ℝ+ → (0 mod (abs‘𝐶)) = 0)
6431, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0 mod (abs‘𝐶)) = 0)
6560, 62, 643eqtr4d 2774 . . . . . . . . . . . . 13 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
66 modadd1 13846 . . . . . . . . . . . . 13 (((((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ ∧ 0 ∈ ℝ) ∧ ((𝐷 · (𝐹↑2)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶))) → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6746, 47, 45, 31, 65, 66syl221anc 1383 . . . . . . . . . . . 12 (𝜑 → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6838addlidd 11351 . . . . . . . . . . . . . 14 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐷 · (𝐹↑2)))
6911sqvald 14084 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) = (𝐹 · 𝐹))
7069oveq2d 7385 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) = (𝐷 · (𝐹 · 𝐹)))
717, 11, 11mul12d 11359 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹 · 𝐹)) = (𝐹 · (𝐷 · 𝐹)))
7268, 70, 713eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐹 · (𝐷 · 𝐹)))
7372oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
7442, 67, 733eqtrd 2768 . . . . . . . . . . 11 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
756nnzd 12532 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℤ)
7610nnzd 12532 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℤ)
7775, 76zmulcld 12620 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · 𝐹) ∈ ℤ)
78 pellex.ycg . . . . . . . . . . . . . 14 (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
7978eqcomd 2735 . . . . . . . . . . . . 13 (𝜑 → (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶)))
80 modmul1 13865 . . . . . . . . . . . . 13 (((𝐹 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐷 · 𝐹) ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶))) → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
8127, 26, 77, 31, 79, 80syl221anc 1383 . . . . . . . . . . . 12 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
829, 7, 11mul12d 11359 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · (𝐷 · 𝐹)) = (𝐷 · (𝐵 · 𝐹)))
8382oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8481, 83eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8535, 74, 843eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
86 modadd1 13846 . . . . . . . . . 10 ((((𝐴 · 𝐸) ∈ ℝ ∧ (𝐷 · (𝐵 · 𝐹)) ∈ ℝ) ∧ (-(𝐷 · (𝐵 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶))) → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8724, 29, 30, 31, 85, 86syl221anc 1383 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8813negidd 11499 . . . . . . . . . 10 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) = 0)
8988oveq1d 7384 . . . . . . . . 9 (𝜑 → (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9021, 87, 893eqtrd 2768 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9190, 64eqtrd 2764 . . . . . . 7 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0)
9224, 29resubcld 11582 . . . . . . . 8 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ)
93 absmod0 15245 . . . . . . . 8 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9492, 31, 93syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9591, 94mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0)
9614abscld 15381 . . . . . . 7 (𝜑 → (abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ)
97 mod0 13814 . . . . . . 7 (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9896, 31, 97syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9995, 98mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ)
10018, 99eqeltrd 2828 . . . 4 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ)
10192, 57, 17redivcld 11986 . . . . 5 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ)
102 absz 15253 . . . . 5 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
103101, 102syl 17 . . . 4 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
104100, 103mpbird 257 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ)
105 0lt1 11676 . . . . . . . 8 0 < 1
106 0re 11152 . . . . . . . . 9 0 ∈ ℝ
107 1re 11150 . . . . . . . . 9 1 ∈ ℝ
108106, 107ltnlei 11271 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
109105, 108mpbi 230 . . . . . . 7 ¬ 1 ≤ 0
1109, 4mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 𝐸) ∈ ℂ)
1112, 11mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐹) ∈ ℂ)
112110, 111subcld 11509 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℂ)
113112, 16, 17divcld 11934 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℂ)
114113abscld 15381 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℝ)
115114resqcld 14066 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) ∈ ℝ)
1166nnnn0d 12479 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
117116nn0ge0d 12482 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
118114sqge0d 14078 . . . . . . . . . 10 (𝜑 → 0 ≤ ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
11925, 115, 117, 118mulge0d 11731 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
12025, 115remulcld 11180 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) ∈ ℝ)
12147, 120suble0d 11745 . . . . . . . . 9 (𝜑 → ((0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0 ↔ 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
122119, 121mpbird 257 . . . . . . . 8 (𝜑 → (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0)
123 breq1 5105 . . . . . . . 8 (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → (1 ≤ 0 ↔ (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0))
124122, 123syl5ibrcom 247 . . . . . . 7 (𝜑 → (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → 1 ≤ 0))
125109, 124mtoi 199 . . . . . 6 (𝜑 → ¬ 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
126 absresq 15244 . . . . . . . . . . . 12 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
127101, 126syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
12814, 16, 17sqdivd 14100 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)))
12914sqvald 14084 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) = (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))))
130129oveq1d 7384 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
131127, 128, 1303eqtrd 2768 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
13226, 23remulcld 11180 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 · 𝐸) ∈ ℝ)
13322, 27remulcld 11180 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 · 𝐹) ∈ ℝ)
134132, 133resubcld 11582 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ)
135134, 57, 17redivcld 11986 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ)
136 absresq 15244 . . . . . . . . . . . . . 14 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
137135, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
138112, 16, 17sqdivd 14100 . . . . . . . . . . . . 13 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
139137, 138eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
140139oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
141112sqcld 14085 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) ∈ ℂ)
14216sqcld 14085 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℂ)
143 sqne0 14064 . . . . . . . . . . . . . 14 (𝐶 ∈ ℂ → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14416, 143syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14517, 144mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ≠ 0)
1467, 141, 142, 145divassd 11969 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
147112sqvald 14084 . . . . . . . . . . . . 13 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) = (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))
148147oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) = (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))))
149148oveq1d 7384 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
150140, 146, 1493eqtr2d 2770 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
151131, 150oveq12d 7387 . . . . . . . . 9 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
15214, 14mulcld 11170 . . . . . . . . . 10 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
153112, 112mulcld 11170 . . . . . . . . . . 11 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℂ)
1547, 153mulcld 11170 . . . . . . . . . 10 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) ∈ ℂ)
155152, 154, 142, 145divsubdird 11973 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
1565, 13, 5, 13mulsubd 11613 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))))
157110, 111, 110, 111mulsubd 11613 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) = ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
158157oveq2d 7385 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
159110, 110mulcld 11170 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐵 · 𝐸)) ∈ ℂ)
160111, 111mulcld 11170 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐹) · (𝐴 · 𝐹)) ∈ ℂ)
161159, 160addcld 11169 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
162110, 111mulcld 11170 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐴 · 𝐹)) ∈ ℂ)
163162, 162addcld 11169 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
1647, 161, 163subdid 11610 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
1657, 159, 160adddid 11174 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
1667, 162, 162adddid 11174 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
167165, 166oveq12d 7387 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
168158, 164, 1673eqtrd 2768 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
169156, 168oveq12d 7387 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
170169oveq1d 7384 . . . . . . . . . 10 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)))
1715, 13mulcomd 11171 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)))
1727, 12, 5mulassd 11173 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)) = (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))))
1732, 4mulcomd 11171 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 · 𝐸) = (𝐸 · 𝐴))
174173oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐹) · (𝐸 · 𝐴)))
1759, 11, 4, 2mul4d 11362 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐸 · 𝐴)) = ((𝐵 · 𝐸) · (𝐹 · 𝐴)))
17611, 2mulcomd 11171 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 · 𝐴) = (𝐴 · 𝐹))
177176oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸) · (𝐹 · 𝐴)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
178174, 175, 1773eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
179178oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
180171, 172, 1793eqtrd 2768 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
181180, 180oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
182181oveq2d 7385 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
183182oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
1845, 5mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐸) · (𝐴 · 𝐸)) ∈ ℂ)
18513, 13mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
186184, 185addcld 11169 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
1877, 159mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) ∈ ℂ)
1887, 160mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
189187, 188addcld 11169 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) ∈ ℂ)
1907, 162mulcld 11170 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
191190, 190addcld 11169 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) ∈ ℂ)
192186, 189, 191nnncan2d 11544 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
193184, 185, 187, 188addsub4d 11556 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
1945sqvald 14084 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴 · 𝐸) · (𝐴 · 𝐸)))
195110sqvald 14084 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵 · 𝐸) · (𝐵 · 𝐸)))
196195oveq2d 7385 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))))
197194, 196oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))))
19813sqvald 14084 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))))
199111sqvald 14084 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴 · 𝐹) · (𝐴 · 𝐹)))
200199oveq2d 7385 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))
201198, 200oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
202197, 201oveq12d 7387 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
2032, 4sqmuld 14099 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴↑2) · (𝐸↑2)))
2049, 4sqmuld 14099 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵↑2) · (𝐸↑2)))
205204oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
2069sqcld 14085 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵↑2) ∈ ℂ)
2077, 206, 36mulassd 11173 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵↑2)) · (𝐸↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
208205, 207eqtr4d 2767 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = ((𝐷 · (𝐵↑2)) · (𝐸↑2)))
209203, 208oveq12d 7387 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
2107sqvald 14084 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷↑2) = (𝐷 · 𝐷))
2119, 11sqmuld 14099 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹)↑2) = ((𝐵↑2) · (𝐹↑2)))
212210, 211oveq12d 7387 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷↑2) · ((𝐵 · 𝐹)↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
2137, 12sqmuld 14099 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷↑2) · ((𝐵 · 𝐹)↑2)))
2147, 7mulcld 11170 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐷) ∈ ℂ)
215214, 206, 37mulassd 11173 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
216212, 213, 2153eqtr4d 2774 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)))
2172, 11sqmuld 14099 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴↑2) · (𝐹↑2)))
218217oveq2d 7385 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
2192sqcld 14085 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴↑2) ∈ ℂ)
2207, 219, 37mulassd 11173 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐴↑2)) · (𝐹↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
221218, 220eqtr4d 2767 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = ((𝐷 · (𝐴↑2)) · (𝐹↑2)))
222216, 221oveq12d 7387 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
223209, 222oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))))
2247, 206mulcld 11170 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐵↑2)) ∈ ℂ)
225219, 224, 36subdird 11611 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
226 pellex.no1 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
227226oveq1d 7384 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (𝐶 · (𝐸↑2)))
228225, 227eqtr3d 2766 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) = (𝐶 · (𝐸↑2)))
2297, 7, 206mulassd 11173 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) = (𝐷 · (𝐷 · (𝐵↑2))))
230229oveq1d 7384 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
231230oveq1d 7384 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)))
232214, 206mulcld 11170 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) ∈ ℂ)
2337, 219mulcld 11170 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐴↑2)) ∈ ℂ)
234232, 233, 37subdird 11611 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
235 subdi 11587 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
236235eqcomd 2735 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
2377, 224, 219, 236syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
238 negsubdi2 11457 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐷 · (𝐵↑2)) − (𝐴↑2)))
239238eqcomd 2735 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
240219, 224, 239syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
241226negeqd 11391 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = -𝐶)
242240, 241eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -𝐶)
243242oveq2d 7385 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = (𝐷 · -𝐶))
2447, 16mulneg2d 11608 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · -𝐶) = -(𝐷 · 𝐶))
245237, 243, 2443eqtrd 2768 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = -(𝐷 · 𝐶))
246245oveq1d 7384 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (-(𝐷 · 𝐶) · (𝐹↑2)))
247231, 234, 2463eqtr3d 2772 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))) = (-(𝐷 · 𝐶) · (𝐹↑2)))
248228, 247oveq12d 7387 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))))
2497, 16mulcld 11170 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
250249, 37mulneg1d 11607 . . . . . . . . . . . . . . . . 17 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -((𝐷 · 𝐶) · (𝐹↑2)))
2517, 16mulcomd 11171 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐷 · 𝐶) = (𝐶 · 𝐷))
252251oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = ((𝐶 · 𝐷) · (𝐹↑2)))
25316, 7, 37mulassd 11173 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐶 · 𝐷) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
254252, 253eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
255254negeqd 11391 . . . . . . . . . . . . . . . . 17 (𝜑 → -((𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
256250, 255eqtrd 2764 . . . . . . . . . . . . . . . 16 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
257256oveq2d 7385 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))))
25816, 36mulcld 11170 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐸↑2)) ∈ ℂ)
25916, 38mulcld 11170 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐷 · (𝐹↑2))) ∈ ℂ)
260258, 259negsubd 11515 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
26161oveq2d 7385 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = (𝐶 · 𝐶))
262 subdi 11587 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
263262eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26416, 36, 38, 263syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26516sqvald 14084 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) = (𝐶 · 𝐶))
266261, 264, 2653eqtr4d 2774 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶↑2))
267257, 260, 2663eqtrd 2768 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = (𝐶↑2))
268223, 248, 2673eqtrd 2768 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = (𝐶↑2))
269193, 202, 2683eqtr2d 2770 . . . . . . . . . . . 12 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = (𝐶↑2))
270183, 192, 2693eqtrd 2768 . . . . . . . . . . 11 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (𝐶↑2))
271270oveq1d 7384 . . . . . . . . . 10 (𝜑 → ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)) = ((𝐶↑2) / (𝐶↑2)))
272142, 145dividd 11932 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) / (𝐶↑2)) = 1)
273170, 271, 2723eqtrd 2768 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = 1)
274151, 155, 2733eqtr2d 2770 . . . . . . . 8 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
275274adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
276 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
277276fvoveq1d 7391 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = (abs‘(0 / 𝐶)))
27816, 17div0d 11933 . . . . . . . . . . . 12 (𝜑 → (0 / 𝐶) = 0)
279278abs00bd 15233 . . . . . . . . . . 11 (𝜑 → (abs‘(0 / 𝐶)) = 0)
280279adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(0 / 𝐶)) = 0)
281277, 280eqtrd 2764 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = 0)
282281sq0id 14135 . . . . . . . 8 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = 0)
283282oveq1d 7384 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
284275, 283eqtr3d 2766 . . . . . 6 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
285125, 284mtand 815 . . . . 5 (𝜑 → ¬ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
286285neqned 2932 . . . 4 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ≠ 0)
28714, 16, 286, 17divne0d 11950 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0)
288 nnabscl 15268 . . 3 (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ∧ (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
289104, 287, 288syl2anc 584 . 2 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
290112, 16, 17absdivd 15400 . . . . 5 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) = ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)))
291 negsub 11446 . . . . . . . . . . . 12 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) + -(𝐴 · 𝐹)) = ((𝐵 · 𝐸) − (𝐴 · 𝐹)))
292291eqcomd 2735 . . . . . . . . . . 11 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
293110, 111, 292syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
294293oveq1d 7384 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
295133renegcld 11581 . . . . . . . . . 10 (𝜑 → -(𝐴 · 𝐹) ∈ ℝ)
29611, 4mulcomd 11171 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝐸) = (𝐸 · 𝐹))
297296oveq1d 7384 . . . . . . . . . . 11 (𝜑 → ((𝐹 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
298 modmul1 13865 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝐹 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
29926, 27, 32, 31, 78, 298syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
300 modmul1 13865 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐹 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
30122, 23, 76, 31, 33, 300syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
302297, 299, 3013eqtr4d 2774 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶)))
303 modadd1 13846 . . . . . . . . . 10 ((((𝐵 · 𝐸) ∈ ℝ ∧ (𝐴 · 𝐹) ∈ ℝ) ∧ (-(𝐴 · 𝐹) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶))) → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
304132, 133, 295, 31, 302, 303syl221anc 1383 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
305111negidd 11499 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐹) + -(𝐴 · 𝐹)) = 0)
306305oveq1d 7384 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
307294, 304, 3063eqtrd 2768 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
308307, 64eqtrd 2764 . . . . . . 7 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0)
309 absmod0 15245 . . . . . . . 8 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
310134, 31, 309syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
311308, 310mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0)
312112abscld 15381 . . . . . . 7 (𝜑 → (abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ)
313 mod0 13814 . . . . . . 7 (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
314312, 31, 313syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
315311, 314mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ)
316290, 315eqeltrd 2828 . . . 4 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ)
317 absz 15253 . . . . 5 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
318135, 317syl 17 . . . 4 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
319316, 318mpbird 257 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ)
320 pellex.neq . . . . . . 7 (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
32110nnne0d 12212 . . . . . . . . 9 (𝜑𝐹 ≠ 0)
3223nnne0d 12212 . . . . . . . . 9 (𝜑𝐸 ≠ 0)
3239, 11, 2, 4, 321, 322divmuleqd 11980 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) ↔ (𝐵 · 𝐸) = (𝐴 · 𝐹)))
32461adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
325324eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐸↑2) − (𝐷 · (𝐹↑2))))
326325oveq2d 7385 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
3279, 11, 321divcld 11934 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℂ)
328327sqcld 14085 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹)↑2) ∈ ℂ)
329328adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) ∈ ℂ)
33036adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ∈ ℂ)
33138adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (𝐹↑2)) ∈ ℂ)
332329, 330, 331subdid 11610 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))))
333 oveq1 7376 . . . . . . . . . . . . . . . . 17 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → ((𝐵 / 𝐹)↑2) = ((𝐴 / 𝐸)↑2))
334333oveq1d 7384 . . . . . . . . . . . . . . . 16 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
335334adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
3362adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐴 ∈ ℂ)
3374adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ∈ ℂ)
338322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ≠ 0)
339336, 337, 338sqdivd 14100 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐴 / 𝐸)↑2) = ((𝐴↑2) / (𝐸↑2)))
340339oveq1d 7384 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴 / 𝐸)↑2) · (𝐸↑2)) = (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)))
341219adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴↑2) ∈ ℂ)
342 sqne0 14064 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ ℂ → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
3434, 342syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
344322, 343mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸↑2) ≠ 0)
345344adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ≠ 0)
346341, 330, 345divcan1d 11935 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)) = (𝐴↑2))
347335, 340, 3463eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (𝐴↑2))
3487adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐷 ∈ ℂ)
34937adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ∈ ℂ)
350329, 348, 349mul12d 11359 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))))
3519adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐵 ∈ ℂ)
35211adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ∈ ℂ)
353321adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ≠ 0)
354351, 352, 353sqdivd 14100 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = ((𝐵↑2) / (𝐹↑2)))
355354oveq1d 7384 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐹↑2)) = (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)))
356355oveq2d 7385 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))) = (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))))
357206adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐵↑2) ∈ ℂ)
358 sqne0 14064 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℂ → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
35911, 358syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
360321, 359mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹↑2) ≠ 0)
361360adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ≠ 0)
362357, 349, 361divcan1d 11935 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)) = (𝐵↑2))
363362oveq2d 7385 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
364350, 356, 3633eqtrd 2768 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
365347, 364oveq12d 7387 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
366326, 332, 3653eqtrd 2768 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
367226eqcomd 2735 . . . . . . . . . . . . 13 (𝜑𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
368367adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
369366, 368oveq12d 7387 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
37016adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ∈ ℂ)
37117adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ≠ 0)
372329, 370, 371divcan4d 11940 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = ((𝐵 / 𝐹)↑2))
373226, 226oveq12d 7387 . . . . . . . . . . . . 13 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = (𝐶 / 𝐶))
37416, 17dividd 11932 . . . . . . . . . . . . 13 (𝜑 → (𝐶 / 𝐶) = 1)
375373, 374eqtrd 2764 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
376375adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
377369, 372, 3763eqtr3d 2772 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = 1)
37826, 27, 321redivcld 11986 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℝ)
3798nnnn0d 12479 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℕ0)
380379nn0ge0d 12482 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐵)
38110nngt0d 12211 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐹)
382 divge0 12028 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐹 ∈ ℝ ∧ 0 < 𝐹)) → 0 ≤ (𝐵 / 𝐹))
38326, 380, 27, 381, 382syl22anc 838 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (𝐵 / 𝐹))
384378, 383sqrtsqd 15362 . . . . . . . . . . . . . . 15 (𝜑 → (√‘((𝐵 / 𝐹)↑2)) = (𝐵 / 𝐹))
385384eqcomd 2735 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
386385ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
387 fveq2 6840 . . . . . . . . . . . . . 14 (((𝐵 / 𝐹)↑2) = 1 → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
388387adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
389 sqrt1 15213 . . . . . . . . . . . . . 14 (√‘1) = 1
390389a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘1) = 1)
391386, 388, 3903eqtrd 2768 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = 1)
392391ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐵 / 𝐹) = 1))
393 simplr 768 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = (𝐴 / 𝐸))
394 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = 1)
395393, 394eqtr3d 2766 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 / 𝐸) = 1)
396395oveq1d 7384 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = (1 · 𝐸))
3972, 4, 322divcan1d 11935 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
398397ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
3994mullidd 11168 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐸) = 𝐸)
400399ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐸) = 𝐸)
401396, 398, 4003eqtr3d 2772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐴 = 𝐸)
402394oveq1d 7384 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = (1 · 𝐹))
4039, 11, 321divcan1d 11935 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
404403ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
40511mullidd 11168 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐹) = 𝐹)
406405ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐹) = 𝐹)
407402, 404, 4063eqtr3d 2772 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐵 = 𝐹)
408401, 407jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 = 𝐸𝐵 = 𝐹))
409408ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
410392, 409syld 47 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
411377, 410mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴 = 𝐸𝐵 = 𝐹))
412411ex 412 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (𝐴 = 𝐸𝐵 = 𝐹)))
413323, 412sylbird 260 . . . . . . 7 (𝜑 → ((𝐵 · 𝐸) = (𝐴 · 𝐹) → (𝐴 = 𝐸𝐵 = 𝐹)))
414320, 413mtod 198 . . . . . 6 (𝜑 → ¬ (𝐵 · 𝐸) = (𝐴 · 𝐹))
415414neqned 2932 . . . . 5 (𝜑 → (𝐵 · 𝐸) ≠ (𝐴 · 𝐹))
416110, 111, 415subne0d 11518 . . . 4 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ≠ 0)
417112, 16, 416, 17divne0d 11950 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0)
418 nnabscl 15268 . . 3 (((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ∧ (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0) → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
419319, 417, 418syl2anc 584 . 2 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
420 oveq1 7376 . . . . 5 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (𝑎↑2) = ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2))
421420oveq1d 7384 . . . 4 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))))
422421eqeq1d 2731 . . 3 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1))
423 oveq1 7376 . . . . . 6 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝑏↑2) = ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
424423oveq2d 7385 . . . . 5 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝐷 · (𝑏↑2)) = (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
425424oveq2d 7385 . . . 4 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
426425eqeq1d 2731 . . 3 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → ((((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1))
427422, 426rspc2ev 3598 . 2 (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ ∧ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ ∧ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
428289, 419, 274, 427syl3anc 1373 1 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  cz 12505  cq 12883  +crp 12927   mod cmo 13807  cexp 14002  csqrt 15175  abscabs 15176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178
This theorem is referenced by:  pellex  42816
  Copyright terms: Public domain W3C validator