Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem6 Structured version   Visualization version   GIF version

Theorem pellexlem6 42821
Description: Lemma for pellex 42822. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Hypotheses
Ref Expression
pellex.ann (𝜑𝐴 ∈ ℕ)
pellex.bnn (𝜑𝐵 ∈ ℕ)
pellex.cz (𝜑𝐶 ∈ ℤ)
pellex.dnn (𝜑𝐷 ∈ ℕ)
pellex.irr (𝜑 → ¬ (√‘𝐷) ∈ ℚ)
pellex.enn (𝜑𝐸 ∈ ℕ)
pellex.fnn (𝜑𝐹 ∈ ℕ)
pellex.neq (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
pellex.cn0 (𝜑𝐶 ≠ 0)
pellex.no1 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
pellex.no2 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
pellex.xcg (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
pellex.ycg (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
Assertion
Ref Expression
pellexlem6 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem pellexlem6
StepHypRef Expression
1 pellex.ann . . . . . . . . 9 (𝜑𝐴 ∈ ℕ)
21nncnd 12279 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 pellex.enn . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
43nncnd 12279 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
52, 4mulcld 11278 . . . . . . 7 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
6 pellex.dnn . . . . . . . . 9 (𝜑𝐷 ∈ ℕ)
76nncnd 12279 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
8 pellex.bnn . . . . . . . . . 10 (𝜑𝐵 ∈ ℕ)
98nncnd 12279 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
10 pellex.fnn . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ)
1110nncnd 12279 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
129, 11mulcld 11278 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
137, 12mulcld 11278 . . . . . . 7 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℂ)
145, 13subcld 11617 . . . . . 6 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
15 pellex.cz . . . . . . 7 (𝜑𝐶 ∈ ℤ)
1615zcnd 12720 . . . . . 6 (𝜑𝐶 ∈ ℂ)
17 pellex.cn0 . . . . . 6 (𝜑𝐶 ≠ 0)
1814, 16, 17absdivd 15490 . . . . 5 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)))
195, 13negsubd 11623 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))))
2019eqcomd 2740 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))))
2120oveq1d 7445 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
221nnred 12278 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
233nnred 12278 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
2422, 23remulcld 11288 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐸) ∈ ℝ)
256nnred 12278 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
268nnred 12278 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2710nnred 12278 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℝ)
2826, 27remulcld 11288 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝐹) ∈ ℝ)
2925, 28remulcld 11288 . . . . . . . . . 10 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3029renegcld 11687 . . . . . . . . . 10 (𝜑 → -(𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3116, 17absrpcld 15483 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ+)
323nnzd 12637 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℤ)
33 pellex.xcg . . . . . . . . . . . 12 (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
34 modmul1 13961 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
3522, 23, 32, 31, 33, 34syl221anc 1380 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
364sqcld 14180 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸↑2) ∈ ℂ)
3711sqcld 14180 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹↑2) ∈ ℂ)
387, 37mulcld 11278 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℂ)
3936, 38npcand 11621 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) = (𝐸↑2))
404sqvald 14179 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
4139, 40eqtr2d 2775 . . . . . . . . . . . . 13 (𝜑 → (𝐸 · 𝐸) = (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))))
4241oveq1d 7445 . . . . . . . . . . . 12 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
4323resqcld 14161 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) ∈ ℝ)
4427resqcld 14161 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) ∈ ℝ)
4525, 44remulcld 11288 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℝ)
4643, 45resubcld 11688 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ)
47 0red 11261 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
4816abscld 15471 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
4948recnd 11286 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ∈ ℂ)
5016, 17absne0d 15482 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ≠ 0)
5149, 50dividd 12038 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) = 1)
52 1zzd 12645 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
5351, 52eqeltrd 2838 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ)
54 mod0 13912 . . . . . . . . . . . . . . . . 17 (((abs‘𝐶) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5548, 31, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5653, 55mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) mod (abs‘𝐶)) = 0)
5715zred 12719 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ)
58 absmod0 15338 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
5957, 31, 58syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
6056, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 mod (abs‘𝐶)) = 0)
61 pellex.no2 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
6261oveq1d 7445 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (𝐶 mod (abs‘𝐶)))
63 0mod 13938 . . . . . . . . . . . . . . 15 ((abs‘𝐶) ∈ ℝ+ → (0 mod (abs‘𝐶)) = 0)
6431, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0 mod (abs‘𝐶)) = 0)
6560, 62, 643eqtr4d 2784 . . . . . . . . . . . . 13 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
66 modadd1 13944 . . . . . . . . . . . . 13 (((((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ ∧ 0 ∈ ℝ) ∧ ((𝐷 · (𝐹↑2)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶))) → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6746, 47, 45, 31, 65, 66syl221anc 1380 . . . . . . . . . . . 12 (𝜑 → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6838addlidd 11459 . . . . . . . . . . . . . 14 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐷 · (𝐹↑2)))
6911sqvald 14179 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) = (𝐹 · 𝐹))
7069oveq2d 7446 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) = (𝐷 · (𝐹 · 𝐹)))
717, 11, 11mul12d 11467 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹 · 𝐹)) = (𝐹 · (𝐷 · 𝐹)))
7268, 70, 713eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐹 · (𝐷 · 𝐹)))
7372oveq1d 7445 . . . . . . . . . . . 12 (𝜑 → ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
7442, 67, 733eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
756nnzd 12637 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℤ)
7610nnzd 12637 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℤ)
7775, 76zmulcld 12725 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · 𝐹) ∈ ℤ)
78 pellex.ycg . . . . . . . . . . . . . 14 (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
7978eqcomd 2740 . . . . . . . . . . . . 13 (𝜑 → (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶)))
80 modmul1 13961 . . . . . . . . . . . . 13 (((𝐹 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐷 · 𝐹) ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶))) → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
8127, 26, 77, 31, 79, 80syl221anc 1380 . . . . . . . . . . . 12 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
829, 7, 11mul12d 11467 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · (𝐷 · 𝐹)) = (𝐷 · (𝐵 · 𝐹)))
8382oveq1d 7445 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8481, 83eqtrd 2774 . . . . . . . . . . 11 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8535, 74, 843eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
86 modadd1 13944 . . . . . . . . . 10 ((((𝐴 · 𝐸) ∈ ℝ ∧ (𝐷 · (𝐵 · 𝐹)) ∈ ℝ) ∧ (-(𝐷 · (𝐵 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶))) → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8724, 29, 30, 31, 85, 86syl221anc 1380 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8813negidd 11607 . . . . . . . . . 10 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) = 0)
8988oveq1d 7445 . . . . . . . . 9 (𝜑 → (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9021, 87, 893eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9190, 64eqtrd 2774 . . . . . . 7 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0)
9224, 29resubcld 11688 . . . . . . . 8 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ)
93 absmod0 15338 . . . . . . . 8 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9492, 31, 93syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9591, 94mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0)
9614abscld 15471 . . . . . . 7 (𝜑 → (abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ)
97 mod0 13912 . . . . . . 7 (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9896, 31, 97syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9995, 98mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ)
10018, 99eqeltrd 2838 . . . 4 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ)
10192, 57, 17redivcld 12092 . . . . 5 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ)
102 absz 15346 . . . . 5 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
103101, 102syl 17 . . . 4 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
104100, 103mpbird 257 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ)
105 0lt1 11782 . . . . . . . 8 0 < 1
106 0re 11260 . . . . . . . . 9 0 ∈ ℝ
107 1re 11258 . . . . . . . . 9 1 ∈ ℝ
108106, 107ltnlei 11379 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
109105, 108mpbi 230 . . . . . . 7 ¬ 1 ≤ 0
1109, 4mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 𝐸) ∈ ℂ)
1112, 11mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐹) ∈ ℂ)
112110, 111subcld 11617 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℂ)
113112, 16, 17divcld 12040 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℂ)
114113abscld 15471 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℝ)
115114resqcld 14161 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) ∈ ℝ)
1166nnnn0d 12584 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
117116nn0ge0d 12587 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
118114sqge0d 14173 . . . . . . . . . 10 (𝜑 → 0 ≤ ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
11925, 115, 117, 118mulge0d 11837 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
12025, 115remulcld 11288 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) ∈ ℝ)
12147, 120suble0d 11851 . . . . . . . . 9 (𝜑 → ((0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0 ↔ 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
122119, 121mpbird 257 . . . . . . . 8 (𝜑 → (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0)
123 breq1 5150 . . . . . . . 8 (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → (1 ≤ 0 ↔ (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0))
124122, 123syl5ibrcom 247 . . . . . . 7 (𝜑 → (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → 1 ≤ 0))
125109, 124mtoi 199 . . . . . 6 (𝜑 → ¬ 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
126 absresq 15337 . . . . . . . . . . . 12 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
127101, 126syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
12814, 16, 17sqdivd 14195 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)))
12914sqvald 14179 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) = (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))))
130129oveq1d 7445 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
131127, 128, 1303eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
13226, 23remulcld 11288 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 · 𝐸) ∈ ℝ)
13322, 27remulcld 11288 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 · 𝐹) ∈ ℝ)
134132, 133resubcld 11688 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ)
135134, 57, 17redivcld 12092 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ)
136 absresq 15337 . . . . . . . . . . . . . 14 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
137135, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
138112, 16, 17sqdivd 14195 . . . . . . . . . . . . 13 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
139137, 138eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
140139oveq2d 7446 . . . . . . . . . . 11 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
141112sqcld 14180 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) ∈ ℂ)
14216sqcld 14180 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℂ)
143 sqne0 14159 . . . . . . . . . . . . . 14 (𝐶 ∈ ℂ → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14416, 143syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14517, 144mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ≠ 0)
1467, 141, 142, 145divassd 12075 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
147112sqvald 14179 . . . . . . . . . . . . 13 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) = (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))
148147oveq2d 7446 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) = (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))))
149148oveq1d 7445 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
150140, 146, 1493eqtr2d 2780 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
151131, 150oveq12d 7448 . . . . . . . . 9 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
15214, 14mulcld 11278 . . . . . . . . . 10 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
153112, 112mulcld 11278 . . . . . . . . . . 11 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℂ)
1547, 153mulcld 11278 . . . . . . . . . 10 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) ∈ ℂ)
155152, 154, 142, 145divsubdird 12079 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
1565, 13, 5, 13mulsubd 11719 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))))
157110, 111, 110, 111mulsubd 11719 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) = ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
158157oveq2d 7446 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
159110, 110mulcld 11278 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐵 · 𝐸)) ∈ ℂ)
160111, 111mulcld 11278 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐹) · (𝐴 · 𝐹)) ∈ ℂ)
161159, 160addcld 11277 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
162110, 111mulcld 11278 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐴 · 𝐹)) ∈ ℂ)
163162, 162addcld 11277 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
1647, 161, 163subdid 11716 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
1657, 159, 160adddid 11282 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
1667, 162, 162adddid 11282 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
167165, 166oveq12d 7448 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
168158, 164, 1673eqtrd 2778 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
169156, 168oveq12d 7448 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
170169oveq1d 7445 . . . . . . . . . 10 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)))
1715, 13mulcomd 11279 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)))
1727, 12, 5mulassd 11281 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)) = (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))))
1732, 4mulcomd 11279 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 · 𝐸) = (𝐸 · 𝐴))
174173oveq2d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐹) · (𝐸 · 𝐴)))
1759, 11, 4, 2mul4d 11470 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐸 · 𝐴)) = ((𝐵 · 𝐸) · (𝐹 · 𝐴)))
17611, 2mulcomd 11279 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 · 𝐴) = (𝐴 · 𝐹))
177176oveq2d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸) · (𝐹 · 𝐴)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
178174, 175, 1773eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
179178oveq2d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
180171, 172, 1793eqtrd 2778 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
181180, 180oveq12d 7448 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
182181oveq2d 7446 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
183182oveq1d 7445 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
1845, 5mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐸) · (𝐴 · 𝐸)) ∈ ℂ)
18513, 13mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
186184, 185addcld 11277 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
1877, 159mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) ∈ ℂ)
1887, 160mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
189187, 188addcld 11277 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) ∈ ℂ)
1907, 162mulcld 11278 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
191190, 190addcld 11277 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) ∈ ℂ)
192186, 189, 191nnncan2d 11652 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
193184, 185, 187, 188addsub4d 11664 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
1945sqvald 14179 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴 · 𝐸) · (𝐴 · 𝐸)))
195110sqvald 14179 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵 · 𝐸) · (𝐵 · 𝐸)))
196195oveq2d 7446 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))))
197194, 196oveq12d 7448 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))))
19813sqvald 14179 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))))
199111sqvald 14179 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴 · 𝐹) · (𝐴 · 𝐹)))
200199oveq2d 7446 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))
201198, 200oveq12d 7448 . . . . . . . . . . . . . 14 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
202197, 201oveq12d 7448 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
2032, 4sqmuld 14194 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴↑2) · (𝐸↑2)))
2049, 4sqmuld 14194 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵↑2) · (𝐸↑2)))
205204oveq2d 7446 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
2069sqcld 14180 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵↑2) ∈ ℂ)
2077, 206, 36mulassd 11281 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵↑2)) · (𝐸↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
208205, 207eqtr4d 2777 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = ((𝐷 · (𝐵↑2)) · (𝐸↑2)))
209203, 208oveq12d 7448 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
2107sqvald 14179 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷↑2) = (𝐷 · 𝐷))
2119, 11sqmuld 14194 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹)↑2) = ((𝐵↑2) · (𝐹↑2)))
212210, 211oveq12d 7448 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷↑2) · ((𝐵 · 𝐹)↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
2137, 12sqmuld 14194 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷↑2) · ((𝐵 · 𝐹)↑2)))
2147, 7mulcld 11278 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐷) ∈ ℂ)
215214, 206, 37mulassd 11281 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
216212, 213, 2153eqtr4d 2784 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)))
2172, 11sqmuld 14194 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴↑2) · (𝐹↑2)))
218217oveq2d 7446 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
2192sqcld 14180 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴↑2) ∈ ℂ)
2207, 219, 37mulassd 11281 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐴↑2)) · (𝐹↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
221218, 220eqtr4d 2777 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = ((𝐷 · (𝐴↑2)) · (𝐹↑2)))
222216, 221oveq12d 7448 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
223209, 222oveq12d 7448 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))))
2247, 206mulcld 11278 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐵↑2)) ∈ ℂ)
225219, 224, 36subdird 11717 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
226 pellex.no1 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
227226oveq1d 7445 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (𝐶 · (𝐸↑2)))
228225, 227eqtr3d 2776 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) = (𝐶 · (𝐸↑2)))
2297, 7, 206mulassd 11281 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) = (𝐷 · (𝐷 · (𝐵↑2))))
230229oveq1d 7445 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
231230oveq1d 7445 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)))
232214, 206mulcld 11278 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) ∈ ℂ)
2337, 219mulcld 11278 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐴↑2)) ∈ ℂ)
234232, 233, 37subdird 11717 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
235 subdi 11693 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
236235eqcomd 2740 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
2377, 224, 219, 236syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
238 negsubdi2 11565 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐷 · (𝐵↑2)) − (𝐴↑2)))
239238eqcomd 2740 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
240219, 224, 239syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
241226negeqd 11499 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = -𝐶)
242240, 241eqtrd 2774 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -𝐶)
243242oveq2d 7446 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = (𝐷 · -𝐶))
2447, 16mulneg2d 11714 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · -𝐶) = -(𝐷 · 𝐶))
245237, 243, 2443eqtrd 2778 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = -(𝐷 · 𝐶))
246245oveq1d 7445 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (-(𝐷 · 𝐶) · (𝐹↑2)))
247231, 234, 2463eqtr3d 2782 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))) = (-(𝐷 · 𝐶) · (𝐹↑2)))
248228, 247oveq12d 7448 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))))
2497, 16mulcld 11278 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
250249, 37mulneg1d 11713 . . . . . . . . . . . . . . . . 17 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -((𝐷 · 𝐶) · (𝐹↑2)))
2517, 16mulcomd 11279 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐷 · 𝐶) = (𝐶 · 𝐷))
252251oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = ((𝐶 · 𝐷) · (𝐹↑2)))
25316, 7, 37mulassd 11281 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐶 · 𝐷) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
254252, 253eqtrd 2774 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
255254negeqd 11499 . . . . . . . . . . . . . . . . 17 (𝜑 → -((𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
256250, 255eqtrd 2774 . . . . . . . . . . . . . . . 16 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
257256oveq2d 7446 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))))
25816, 36mulcld 11278 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐸↑2)) ∈ ℂ)
25916, 38mulcld 11278 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐷 · (𝐹↑2))) ∈ ℂ)
260258, 259negsubd 11623 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
26161oveq2d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = (𝐶 · 𝐶))
262 subdi 11693 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
263262eqcomd 2740 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26416, 36, 38, 263syl3anc 1370 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26516sqvald 14179 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) = (𝐶 · 𝐶))
266261, 264, 2653eqtr4d 2784 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶↑2))
267257, 260, 2663eqtrd 2778 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = (𝐶↑2))
268223, 248, 2673eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = (𝐶↑2))
269193, 202, 2683eqtr2d 2780 . . . . . . . . . . . 12 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = (𝐶↑2))
270183, 192, 2693eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (𝐶↑2))
271270oveq1d 7445 . . . . . . . . . 10 (𝜑 → ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)) = ((𝐶↑2) / (𝐶↑2)))
272142, 145dividd 12038 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) / (𝐶↑2)) = 1)
273170, 271, 2723eqtrd 2778 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = 1)
274151, 155, 2733eqtr2d 2780 . . . . . . . 8 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
275274adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
276 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
277276fvoveq1d 7452 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = (abs‘(0 / 𝐶)))
27816, 17div0d 12039 . . . . . . . . . . . 12 (𝜑 → (0 / 𝐶) = 0)
279278abs00bd 15326 . . . . . . . . . . 11 (𝜑 → (abs‘(0 / 𝐶)) = 0)
280279adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(0 / 𝐶)) = 0)
281277, 280eqtrd 2774 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = 0)
282281sq0id 14229 . . . . . . . 8 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = 0)
283282oveq1d 7445 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
284275, 283eqtr3d 2776 . . . . . 6 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
285125, 284mtand 816 . . . . 5 (𝜑 → ¬ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
286285neqned 2944 . . . 4 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ≠ 0)
28714, 16, 286, 17divne0d 12056 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0)
288 nnabscl 15360 . . 3 (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ∧ (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
289104, 287, 288syl2anc 584 . 2 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
290112, 16, 17absdivd 15490 . . . . 5 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) = ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)))
291 negsub 11554 . . . . . . . . . . . 12 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) + -(𝐴 · 𝐹)) = ((𝐵 · 𝐸) − (𝐴 · 𝐹)))
292291eqcomd 2740 . . . . . . . . . . 11 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
293110, 111, 292syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
294293oveq1d 7445 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
295133renegcld 11687 . . . . . . . . . 10 (𝜑 → -(𝐴 · 𝐹) ∈ ℝ)
29611, 4mulcomd 11279 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝐸) = (𝐸 · 𝐹))
297296oveq1d 7445 . . . . . . . . . . 11 (𝜑 → ((𝐹 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
298 modmul1 13961 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝐹 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
29926, 27, 32, 31, 78, 298syl221anc 1380 . . . . . . . . . . 11 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
300 modmul1 13961 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐹 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
30122, 23, 76, 31, 33, 300syl221anc 1380 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
302297, 299, 3013eqtr4d 2784 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶)))
303 modadd1 13944 . . . . . . . . . 10 ((((𝐵 · 𝐸) ∈ ℝ ∧ (𝐴 · 𝐹) ∈ ℝ) ∧ (-(𝐴 · 𝐹) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶))) → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
304132, 133, 295, 31, 302, 303syl221anc 1380 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
305111negidd 11607 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐹) + -(𝐴 · 𝐹)) = 0)
306305oveq1d 7445 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
307294, 304, 3063eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
308307, 64eqtrd 2774 . . . . . . 7 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0)
309 absmod0 15338 . . . . . . . 8 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
310134, 31, 309syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
311308, 310mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0)
312112abscld 15471 . . . . . . 7 (𝜑 → (abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ)
313 mod0 13912 . . . . . . 7 (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
314312, 31, 313syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
315311, 314mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ)
316290, 315eqeltrd 2838 . . . 4 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ)
317 absz 15346 . . . . 5 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
318135, 317syl 17 . . . 4 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
319316, 318mpbird 257 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ)
320 pellex.neq . . . . . . 7 (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
32110nnne0d 12313 . . . . . . . . 9 (𝜑𝐹 ≠ 0)
3223nnne0d 12313 . . . . . . . . 9 (𝜑𝐸 ≠ 0)
3239, 11, 2, 4, 321, 322divmuleqd 12086 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) ↔ (𝐵 · 𝐸) = (𝐴 · 𝐹)))
32461adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
325324eqcomd 2740 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐸↑2) − (𝐷 · (𝐹↑2))))
326325oveq2d 7446 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
3279, 11, 321divcld 12040 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℂ)
328327sqcld 14180 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹)↑2) ∈ ℂ)
329328adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) ∈ ℂ)
33036adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ∈ ℂ)
33138adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (𝐹↑2)) ∈ ℂ)
332329, 330, 331subdid 11716 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))))
333 oveq1 7437 . . . . . . . . . . . . . . . . 17 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → ((𝐵 / 𝐹)↑2) = ((𝐴 / 𝐸)↑2))
334333oveq1d 7445 . . . . . . . . . . . . . . . 16 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
335334adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
3362adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐴 ∈ ℂ)
3374adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ∈ ℂ)
338322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ≠ 0)
339336, 337, 338sqdivd 14195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐴 / 𝐸)↑2) = ((𝐴↑2) / (𝐸↑2)))
340339oveq1d 7445 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴 / 𝐸)↑2) · (𝐸↑2)) = (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)))
341219adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴↑2) ∈ ℂ)
342 sqne0 14159 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ ℂ → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
3434, 342syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
344322, 343mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸↑2) ≠ 0)
345344adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ≠ 0)
346341, 330, 345divcan1d 12041 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)) = (𝐴↑2))
347335, 340, 3463eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (𝐴↑2))
3487adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐷 ∈ ℂ)
34937adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ∈ ℂ)
350329, 348, 349mul12d 11467 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))))
3519adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐵 ∈ ℂ)
35211adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ∈ ℂ)
353321adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ≠ 0)
354351, 352, 353sqdivd 14195 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = ((𝐵↑2) / (𝐹↑2)))
355354oveq1d 7445 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐹↑2)) = (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)))
356355oveq2d 7446 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))) = (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))))
357206adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐵↑2) ∈ ℂ)
358 sqne0 14159 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℂ → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
35911, 358syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
360321, 359mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹↑2) ≠ 0)
361360adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ≠ 0)
362357, 349, 361divcan1d 12041 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)) = (𝐵↑2))
363362oveq2d 7446 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
364350, 356, 3633eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
365347, 364oveq12d 7448 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
366326, 332, 3653eqtrd 2778 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
367226eqcomd 2740 . . . . . . . . . . . . 13 (𝜑𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
368367adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
369366, 368oveq12d 7448 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
37016adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ∈ ℂ)
37117adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ≠ 0)
372329, 370, 371divcan4d 12046 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = ((𝐵 / 𝐹)↑2))
373226, 226oveq12d 7448 . . . . . . . . . . . . 13 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = (𝐶 / 𝐶))
37416, 17dividd 12038 . . . . . . . . . . . . 13 (𝜑 → (𝐶 / 𝐶) = 1)
375373, 374eqtrd 2774 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
376375adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
377369, 372, 3763eqtr3d 2782 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = 1)
37826, 27, 321redivcld 12092 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℝ)
3798nnnn0d 12584 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℕ0)
380379nn0ge0d 12587 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐵)
38110nngt0d 12312 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐹)
382 divge0 12134 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐹 ∈ ℝ ∧ 0 < 𝐹)) → 0 ≤ (𝐵 / 𝐹))
38326, 380, 27, 381, 382syl22anc 839 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (𝐵 / 𝐹))
384378, 383sqrtsqd 15454 . . . . . . . . . . . . . . 15 (𝜑 → (√‘((𝐵 / 𝐹)↑2)) = (𝐵 / 𝐹))
385384eqcomd 2740 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
386385ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
387 fveq2 6906 . . . . . . . . . . . . . 14 (((𝐵 / 𝐹)↑2) = 1 → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
388387adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
389 sqrt1 15306 . . . . . . . . . . . . . 14 (√‘1) = 1
390389a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘1) = 1)
391386, 388, 3903eqtrd 2778 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = 1)
392391ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐵 / 𝐹) = 1))
393 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = (𝐴 / 𝐸))
394 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = 1)
395393, 394eqtr3d 2776 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 / 𝐸) = 1)
396395oveq1d 7445 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = (1 · 𝐸))
3972, 4, 322divcan1d 12041 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
398397ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
3994mullidd 11276 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐸) = 𝐸)
400399ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐸) = 𝐸)
401396, 398, 4003eqtr3d 2782 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐴 = 𝐸)
402394oveq1d 7445 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = (1 · 𝐹))
4039, 11, 321divcan1d 12041 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
404403ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
40511mullidd 11276 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐹) = 𝐹)
406405ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐹) = 𝐹)
407402, 404, 4063eqtr3d 2782 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐵 = 𝐹)
408401, 407jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 = 𝐸𝐵 = 𝐹))
409408ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
410392, 409syld 47 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
411377, 410mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴 = 𝐸𝐵 = 𝐹))
412411ex 412 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (𝐴 = 𝐸𝐵 = 𝐹)))
413323, 412sylbird 260 . . . . . . 7 (𝜑 → ((𝐵 · 𝐸) = (𝐴 · 𝐹) → (𝐴 = 𝐸𝐵 = 𝐹)))
414320, 413mtod 198 . . . . . 6 (𝜑 → ¬ (𝐵 · 𝐸) = (𝐴 · 𝐹))
415414neqned 2944 . . . . 5 (𝜑 → (𝐵 · 𝐸) ≠ (𝐴 · 𝐹))
416110, 111, 415subne0d 11626 . . . 4 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ≠ 0)
417112, 16, 416, 17divne0d 12056 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0)
418 nnabscl 15360 . . 3 (((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ∧ (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0) → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
419319, 417, 418syl2anc 584 . 2 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
420 oveq1 7437 . . . . 5 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (𝑎↑2) = ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2))
421420oveq1d 7445 . . . 4 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))))
422421eqeq1d 2736 . . 3 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1))
423 oveq1 7437 . . . . . 6 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝑏↑2) = ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
424423oveq2d 7446 . . . . 5 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝐷 · (𝑏↑2)) = (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
425424oveq2d 7446 . . . 4 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
426425eqeq1d 2736 . . 3 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → ((((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1))
427422, 426rspc2ev 3634 . 2 (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ ∧ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ ∧ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
428289, 419, 274, 427syl3anc 1370 1 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  cn 12263  2c2 12318  cz 12610  cq 12987  +crp 13031   mod cmo 13905  cexp 14098  csqrt 15268  abscabs 15269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271
This theorem is referenced by:  pellex  42822
  Copyright terms: Public domain W3C validator