Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellexlem6 Structured version   Visualization version   GIF version

Theorem pellexlem6 42845
Description: Lemma for pellex 42846. Doing a field division between near solutions get us to norm 1, and the modularity constraint ensures we still have an integer. Returning NN guarantees that we are not returning the trivial solution (1,0). We are not explicitly defining the Pell-field, Pell-ring, and Pell-norm explicitly because after this construction is done we will never use them. This is mostly basic algebraic number theory and could be simplified if a generic framework for that were in place. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Hypotheses
Ref Expression
pellex.ann (𝜑𝐴 ∈ ℕ)
pellex.bnn (𝜑𝐵 ∈ ℕ)
pellex.cz (𝜑𝐶 ∈ ℤ)
pellex.dnn (𝜑𝐷 ∈ ℕ)
pellex.irr (𝜑 → ¬ (√‘𝐷) ∈ ℚ)
pellex.enn (𝜑𝐸 ∈ ℕ)
pellex.fnn (𝜑𝐹 ∈ ℕ)
pellex.neq (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
pellex.cn0 (𝜑𝐶 ≠ 0)
pellex.no1 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
pellex.no2 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
pellex.xcg (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
pellex.ycg (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
Assertion
Ref Expression
pellexlem6 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Distinct variable groups:   𝑎,𝑏,𝐴   𝐵,𝑎,𝑏   𝐶,𝑎,𝑏   𝐷,𝑎,𝑏   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝜑,𝑎,𝑏

Proof of Theorem pellexlem6
StepHypRef Expression
1 pellex.ann . . . . . . . . 9 (𝜑𝐴 ∈ ℕ)
21nncnd 12282 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 pellex.enn . . . . . . . . 9 (𝜑𝐸 ∈ ℕ)
43nncnd 12282 . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
52, 4mulcld 11281 . . . . . . 7 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
6 pellex.dnn . . . . . . . . 9 (𝜑𝐷 ∈ ℕ)
76nncnd 12282 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
8 pellex.bnn . . . . . . . . . 10 (𝜑𝐵 ∈ ℕ)
98nncnd 12282 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
10 pellex.fnn . . . . . . . . . 10 (𝜑𝐹 ∈ ℕ)
1110nncnd 12282 . . . . . . . . 9 (𝜑𝐹 ∈ ℂ)
129, 11mulcld 11281 . . . . . . . 8 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
137, 12mulcld 11281 . . . . . . 7 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℂ)
145, 13subcld 11620 . . . . . 6 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
15 pellex.cz . . . . . . 7 (𝜑𝐶 ∈ ℤ)
1615zcnd 12723 . . . . . 6 (𝜑𝐶 ∈ ℂ)
17 pellex.cn0 . . . . . 6 (𝜑𝐶 ≠ 0)
1814, 16, 17absdivd 15494 . . . . 5 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)))
195, 13negsubd 11626 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))))
2019eqcomd 2743 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = ((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))))
2120oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
221nnred 12281 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ)
233nnred 12281 . . . . . . . . . . 11 (𝜑𝐸 ∈ ℝ)
2422, 23remulcld 11291 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐸) ∈ ℝ)
256nnred 12281 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℝ)
268nnred 12281 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
2710nnred 12281 . . . . . . . . . . . 12 (𝜑𝐹 ∈ ℝ)
2826, 27remulcld 11291 . . . . . . . . . . 11 (𝜑 → (𝐵 · 𝐹) ∈ ℝ)
2925, 28remulcld 11291 . . . . . . . . . 10 (𝜑 → (𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3029renegcld 11690 . . . . . . . . . 10 (𝜑 → -(𝐷 · (𝐵 · 𝐹)) ∈ ℝ)
3116, 17absrpcld 15487 . . . . . . . . . 10 (𝜑 → (abs‘𝐶) ∈ ℝ+)
323nnzd 12640 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℤ)
33 pellex.xcg . . . . . . . . . . . 12 (𝜑 → (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶)))
34 modmul1 13965 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
3522, 23, 32, 31, 33, 34syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐸) mod (abs‘𝐶)))
364sqcld 14184 . . . . . . . . . . . . . . 15 (𝜑 → (𝐸↑2) ∈ ℂ)
3711sqcld 14184 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹↑2) ∈ ℂ)
387, 37mulcld 11281 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℂ)
3936, 38npcand 11624 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) = (𝐸↑2))
404sqvald 14183 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) = (𝐸 · 𝐸))
4139, 40eqtr2d 2778 . . . . . . . . . . . . 13 (𝜑 → (𝐸 · 𝐸) = (((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))))
4241oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
4323resqcld 14165 . . . . . . . . . . . . . 14 (𝜑 → (𝐸↑2) ∈ ℝ)
4427resqcld 14165 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) ∈ ℝ)
4525, 44remulcld 11291 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) ∈ ℝ)
4643, 45resubcld 11691 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ)
47 0red 11264 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
4816abscld 15475 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
4948recnd 11289 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ∈ ℂ)
5016, 17absne0d 15486 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘𝐶) ≠ 0)
5149, 50dividd 12041 . . . . . . . . . . . . . . . . 17 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) = 1)
52 1zzd 12648 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℤ)
5351, 52eqeltrd 2841 . . . . . . . . . . . . . . . 16 (𝜑 → ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ)
54 mod0 13916 . . . . . . . . . . . . . . . . 17 (((abs‘𝐶) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5548, 31, 54syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → (((abs‘𝐶) mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) / (abs‘𝐶)) ∈ ℤ))
5653, 55mpbird 257 . . . . . . . . . . . . . . 15 (𝜑 → ((abs‘𝐶) mod (abs‘𝐶)) = 0)
5715zred 12722 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ)
58 absmod0 15342 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
5957, 31, 58syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 mod (abs‘𝐶)) = 0 ↔ ((abs‘𝐶) mod (abs‘𝐶)) = 0))
6056, 59mpbird 257 . . . . . . . . . . . . . 14 (𝜑 → (𝐶 mod (abs‘𝐶)) = 0)
61 pellex.no2 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
6261oveq1d 7446 . . . . . . . . . . . . . 14 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (𝐶 mod (abs‘𝐶)))
63 0mod 13942 . . . . . . . . . . . . . . 15 ((abs‘𝐶) ∈ ℝ+ → (0 mod (abs‘𝐶)) = 0)
6431, 63syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0 mod (abs‘𝐶)) = 0)
6560, 62, 643eqtr4d 2787 . . . . . . . . . . . . 13 (𝜑 → (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
66 modadd1 13948 . . . . . . . . . . . . 13 (((((𝐸↑2) − (𝐷 · (𝐹↑2))) ∈ ℝ ∧ 0 ∈ ℝ) ∧ ((𝐷 · (𝐹↑2)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (((𝐸↑2) − (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶))) → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6746, 47, 45, 31, 65, 66syl221anc 1383 . . . . . . . . . . . 12 (𝜑 → ((((𝐸↑2) − (𝐷 · (𝐹↑2))) + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)))
6838addlidd 11462 . . . . . . . . . . . . . 14 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐷 · (𝐹↑2)))
6911sqvald 14183 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹↑2) = (𝐹 · 𝐹))
7069oveq2d 7447 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹↑2)) = (𝐷 · (𝐹 · 𝐹)))
717, 11, 11mul12d 11470 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (𝐹 · 𝐹)) = (𝐹 · (𝐷 · 𝐹)))
7268, 70, 713eqtrd 2781 . . . . . . . . . . . . 13 (𝜑 → (0 + (𝐷 · (𝐹↑2))) = (𝐹 · (𝐷 · 𝐹)))
7372oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → ((0 + (𝐷 · (𝐹↑2))) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
7442, 67, 733eqtrd 2781 . . . . . . . . . . 11 (𝜑 → ((𝐸 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
756nnzd 12640 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℤ)
7610nnzd 12640 . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ ℤ)
7775, 76zmulcld 12728 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · 𝐹) ∈ ℤ)
78 pellex.ycg . . . . . . . . . . . . . 14 (𝜑 → (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶)))
7978eqcomd 2743 . . . . . . . . . . . . 13 (𝜑 → (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶)))
80 modmul1 13965 . . . . . . . . . . . . 13 (((𝐹 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐷 · 𝐹) ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐹 mod (abs‘𝐶)) = (𝐵 mod (abs‘𝐶))) → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
8127, 26, 77, 31, 79, 80syl221anc 1383 . . . . . . . . . . . 12 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)))
829, 7, 11mul12d 11470 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · (𝐷 · 𝐹)) = (𝐷 · (𝐵 · 𝐹)))
8382oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8481, 83eqtrd 2777 . . . . . . . . . . 11 (𝜑 → ((𝐹 · (𝐷 · 𝐹)) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
8535, 74, 843eqtrd 2781 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶)))
86 modadd1 13948 . . . . . . . . . 10 ((((𝐴 · 𝐸) ∈ ℝ ∧ (𝐷 · (𝐵 · 𝐹)) ∈ ℝ) ∧ (-(𝐷 · (𝐵 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐴 · 𝐸) mod (abs‘𝐶)) = ((𝐷 · (𝐵 · 𝐹)) mod (abs‘𝐶))) → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8724, 29, 30, 31, 85, 86syl221anc 1383 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐸) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)))
8813negidd 11610 . . . . . . . . . 10 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) = 0)
8988oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝐷 · (𝐵 · 𝐹)) + -(𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9021, 87, 893eqtrd 2781 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
9190, 64eqtrd 2777 . . . . . . 7 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0)
9224, 29resubcld 11691 . . . . . . . 8 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ)
93 absmod0 15342 . . . . . . . 8 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9492, 31, 93syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0))
9591, 94mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0)
9614abscld 15475 . . . . . . 7 (𝜑 → (abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ)
97 mod0 13916 . . . . . . 7 (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9896, 31, 97syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ))
9995, 98mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (abs‘𝐶)) ∈ ℤ)
10018, 99eqeltrd 2841 . . . 4 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ)
10192, 57, 17redivcld 12095 . . . . 5 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ)
102 absz 15350 . . . . 5 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
103101, 102syl 17 . . . 4 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℤ))
104100, 103mpbird 257 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ)
105 0lt1 11785 . . . . . . . 8 0 < 1
106 0re 11263 . . . . . . . . 9 0 ∈ ℝ
107 1re 11261 . . . . . . . . 9 1 ∈ ℝ
108106, 107ltnlei 11382 . . . . . . . 8 (0 < 1 ↔ ¬ 1 ≤ 0)
109105, 108mpbi 230 . . . . . . 7 ¬ 1 ≤ 0
1109, 4mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · 𝐸) ∈ ℂ)
1112, 11mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 · 𝐹) ∈ ℂ)
112110, 111subcld 11620 . . . . . . . . . . . . 13 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℂ)
113112, 16, 17divcld 12043 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℂ)
114113abscld 15475 . . . . . . . . . . 11 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℝ)
115114resqcld 14165 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) ∈ ℝ)
1166nnnn0d 12587 . . . . . . . . . . 11 (𝜑𝐷 ∈ ℕ0)
117116nn0ge0d 12590 . . . . . . . . . 10 (𝜑 → 0 ≤ 𝐷)
118114sqge0d 14177 . . . . . . . . . 10 (𝜑 → 0 ≤ ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
11925, 115, 117, 118mulge0d 11840 . . . . . . . . 9 (𝜑 → 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
12025, 115remulcld 11291 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) ∈ ℝ)
12147, 120suble0d 11854 . . . . . . . . 9 (𝜑 → ((0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0 ↔ 0 ≤ (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
122119, 121mpbird 257 . . . . . . . 8 (𝜑 → (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0)
123 breq1 5146 . . . . . . . 8 (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → (1 ≤ 0 ↔ (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) ≤ 0))
124122, 123syl5ibrcom 247 . . . . . . 7 (𝜑 → (1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) → 1 ≤ 0))
125109, 124mtoi 199 . . . . . 6 (𝜑 → ¬ 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
126 absresq 15341 . . . . . . . . . . . 12 ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℝ → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
127101, 126syl 17 . . . . . . . . . . 11 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2))
12814, 16, 17sqdivd 14199 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)))
12914sqvald 14183 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) = (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))))
130129oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))↑2) / (𝐶↑2)) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
131127, 128, 1303eqtrd 2781 . . . . . . . . . 10 (𝜑 → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)))
13226, 23remulcld 11291 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 · 𝐸) ∈ ℝ)
13322, 27remulcld 11291 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐴 · 𝐹) ∈ ℝ)
134132, 133resubcld 11691 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ)
135134, 57, 17redivcld 12095 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ)
136 absresq 15341 . . . . . . . . . . . . . 14 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
137135, 136syl 17 . . . . . . . . . . . . 13 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2))
138112, 16, 17sqdivd 14199 . . . . . . . . . . . . 13 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
139137, 138eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2) = ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2)))
140139oveq2d 7447 . . . . . . . . . . 11 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
141112sqcld 14184 . . . . . . . . . . . 12 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) ∈ ℂ)
14216sqcld 14184 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ∈ ℂ)
143 sqne0 14163 . . . . . . . . . . . . . 14 (𝐶 ∈ ℂ → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14416, 143syl 17 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) ≠ 0 ↔ 𝐶 ≠ 0))
14517, 144mpbird 257 . . . . . . . . . . . 12 (𝜑 → (𝐶↑2) ≠ 0)
1467, 141, 142, 145divassd 12078 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = (𝐷 · ((((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) / (𝐶↑2))))
147112sqvald 14183 . . . . . . . . . . . . 13 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2) = (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))
148147oveq2d 7447 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) = (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))))
149148oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹))↑2)) / (𝐶↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
150140, 146, 1493eqtr2d 2783 . . . . . . . . . 10 (𝜑 → (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)) = ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2)))
151131, 150oveq12d 7449 . . . . . . . . 9 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
15214, 14mulcld 11281 . . . . . . . . . 10 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
153112, 112mulcld 11281 . . . . . . . . . . 11 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℂ)
1547, 153mulcld 11281 . . . . . . . . . 10 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) ∈ ℂ)
155152, 154, 142, 145divsubdird 12082 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) / (𝐶↑2)) − ((𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) / (𝐶↑2))))
1565, 13, 5, 13mulsubd 11722 . . . . . . . . . . . 12 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))))
157110, 111, 110, 111mulsubd 11722 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))) = ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
158157oveq2d 7447 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
159110, 110mulcld 11281 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐵 · 𝐸)) ∈ ℂ)
160111, 111mulcld 11281 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐹) · (𝐴 · 𝐹)) ∈ ℂ)
161159, 160addcld 11280 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
162110, 111mulcld 11281 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 · 𝐸) · (𝐴 · 𝐹)) ∈ ℂ)
163162, 162addcld 11280 . . . . . . . . . . . . . 14 (𝜑 → (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
1647, 161, 163subdid 11719 . . . . . . . . . . . . 13 (𝜑 → (𝐷 · ((((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹))) − (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
1657, 159, 160adddid 11285 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
1667, 162, 162adddid 11285 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
167165, 166oveq12d 7449 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · (((𝐵 · 𝐸) · (𝐵 · 𝐸)) + ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) · (𝐴 · 𝐹)) + ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
168158, 164, 1673eqtrd 2781 . . . . . . . . . . . 12 (𝜑 → (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹)))) = (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
169156, 168oveq12d 7449 . . . . . . . . . . 11 (𝜑 → ((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
170169oveq1d 7446 . . . . . . . . . 10 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)))
1715, 13mulcomd 11282 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)))
1727, 12, 5mulassd 11284 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐴 · 𝐸)) = (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))))
1732, 4mulcomd 11282 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 · 𝐸) = (𝐸 · 𝐴))
174173oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐹) · (𝐸 · 𝐴)))
1759, 11, 4, 2mul4d 11473 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹) · (𝐸 · 𝐴)) = ((𝐵 · 𝐸) · (𝐹 · 𝐴)))
17611, 2mulcomd 11282 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐹 · 𝐴) = (𝐴 · 𝐹))
177176oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸) · (𝐹 · 𝐴)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
178174, 175, 1773eqtrd 2781 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐵 · 𝐹) · (𝐴 · 𝐸)) = ((𝐵 · 𝐸) · (𝐴 · 𝐹)))
179178oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐹) · (𝐴 · 𝐸))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
180171, 172, 1793eqtrd 2781 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) = (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))
181180, 180oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹)))) = ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))
182181oveq2d 7447 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))))
183182oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))))
1845, 5mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐸) · (𝐴 · 𝐸)) ∈ ℂ)
18513, 13mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) ∈ ℂ)
186184, 185addcld 11280 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) ∈ ℂ)
1877, 159mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) ∈ ℂ)
1887, 160mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))) ∈ ℂ)
189187, 188addcld 11280 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) ∈ ℂ)
1907, 162mulcld 11281 . . . . . . . . . . . . . 14 (𝜑 → (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) ∈ ℂ)
191190, 190addcld 11280 . . . . . . . . . . . . 13 (𝜑 → ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))) ∈ ℂ)
192186, 189, 191nnncan2d 11655 . . . . . . . . . . . 12 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
193184, 185, 187, 188addsub4d 11667 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
1945sqvald 14183 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴 · 𝐸) · (𝐴 · 𝐸)))
195110sqvald 14183 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵 · 𝐸) · (𝐵 · 𝐸)))
196195oveq2d 7447 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))))
197194, 196oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))))
19813sqvald 14183 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))))
199111sqvald 14183 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴 · 𝐹) · (𝐴 · 𝐹)))
200199oveq2d 7447 . . . . . . . . . . . . . . 15 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))
201198, 200oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))))
202197, 201oveq12d 7449 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) − (𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸)))) + (((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹))) − (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))))
2032, 4sqmuld 14198 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 · 𝐸)↑2) = ((𝐴↑2) · (𝐸↑2)))
2049, 4sqmuld 14198 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐸)↑2) = ((𝐵↑2) · (𝐸↑2)))
205204oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
2069sqcld 14184 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐵↑2) ∈ ℂ)
2077, 206, 36mulassd 11284 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵↑2)) · (𝐸↑2)) = (𝐷 · ((𝐵↑2) · (𝐸↑2))))
208205, 207eqtr4d 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐵 · 𝐸)↑2)) = ((𝐷 · (𝐵↑2)) · (𝐸↑2)))
209203, 208oveq12d 7449 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
2107sqvald 14183 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷↑2) = (𝐷 · 𝐷))
2119, 11sqmuld 14198 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 · 𝐹)↑2) = ((𝐵↑2) · (𝐹↑2)))
212210, 211oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷↑2) · ((𝐵 · 𝐹)↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
2137, 12sqmuld 14198 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = ((𝐷↑2) · ((𝐵 · 𝐹)↑2)))
2147, 7mulcld 11281 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐷) ∈ ℂ)
215214, 206, 37mulassd 11284 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) = ((𝐷 · 𝐷) · ((𝐵↑2) · (𝐹↑2))))
216212, 213, 2153eqtr4d 2787 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐷 · (𝐵 · 𝐹))↑2) = (((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)))
2172, 11sqmuld 14198 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 · 𝐹)↑2) = ((𝐴↑2) · (𝐹↑2)))
218217oveq2d 7447 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
2192sqcld 14184 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐴↑2) ∈ ℂ)
2207, 219, 37mulassd 11284 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐴↑2)) · (𝐹↑2)) = (𝐷 · ((𝐴↑2) · (𝐹↑2))))
221218, 220eqtr4d 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐷 · ((𝐴 · 𝐹)↑2)) = ((𝐷 · (𝐴↑2)) · (𝐹↑2)))
222216, 221oveq12d 7449 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2))) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
223209, 222oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))))
2247, 206mulcld 11281 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐵↑2)) ∈ ℂ)
225219, 224, 36subdird 11720 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))))
226 pellex.no1 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴↑2) − (𝐷 · (𝐵↑2))) = 𝐶)
227226oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) · (𝐸↑2)) = (𝐶 · (𝐸↑2)))
228225, 227eqtr3d 2779 . . . . . . . . . . . . . . 15 (𝜑 → (((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) = (𝐶 · (𝐸↑2)))
2297, 7, 206mulassd 11284 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) = (𝐷 · (𝐷 · (𝐵↑2))))
230229oveq1d 7446 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
231230oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)))
232214, 206mulcld 11281 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · 𝐷) · (𝐵↑2)) ∈ ℂ)
2337, 219mulcld 11281 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐷 · (𝐴↑2)) ∈ ℂ)
234232, 233, 37subdird 11720 . . . . . . . . . . . . . . . 16 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))))
235 subdi 11696 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))))
236235eqcomd 2743 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
2377, 224, 219, 236syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))))
238 negsubdi2 11568 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = ((𝐷 · (𝐵↑2)) − (𝐴↑2)))
239238eqcomd 2743 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴↑2) ∈ ℂ ∧ (𝐷 · (𝐵↑2)) ∈ ℂ) → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
240219, 224, 239syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -((𝐴↑2) − (𝐷 · (𝐵↑2))))
241226negeqd 11502 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → -((𝐴↑2) − (𝐷 · (𝐵↑2))) = -𝐶)
242240, 241eqtrd 2777 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · (𝐵↑2)) − (𝐴↑2)) = -𝐶)
243242oveq2d 7447 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · ((𝐷 · (𝐵↑2)) − (𝐴↑2))) = (𝐷 · -𝐶))
2447, 16mulneg2d 11717 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · -𝐶) = -(𝐷 · 𝐶))
245237, 243, 2443eqtrd 2781 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) = -(𝐷 · 𝐶))
246245oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝜑 → (((𝐷 · (𝐷 · (𝐵↑2))) − (𝐷 · (𝐴↑2))) · (𝐹↑2)) = (-(𝐷 · 𝐶) · (𝐹↑2)))
247231, 234, 2463eqtr3d 2785 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2))) = (-(𝐷 · 𝐶) · (𝐹↑2)))
248228, 247oveq12d 7449 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴↑2) · (𝐸↑2)) − ((𝐷 · (𝐵↑2)) · (𝐸↑2))) + ((((𝐷 · 𝐷) · (𝐵↑2)) · (𝐹↑2)) − ((𝐷 · (𝐴↑2)) · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))))
2497, 16mulcld 11281 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐷 · 𝐶) ∈ ℂ)
250249, 37mulneg1d 11716 . . . . . . . . . . . . . . . . 17 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -((𝐷 · 𝐶) · (𝐹↑2)))
2517, 16mulcomd 11282 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐷 · 𝐶) = (𝐶 · 𝐷))
252251oveq1d 7446 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = ((𝐶 · 𝐷) · (𝐹↑2)))
25316, 7, 37mulassd 11284 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐶 · 𝐷) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
254252, 253eqtrd 2777 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐷 · 𝐶) · (𝐹↑2)) = (𝐶 · (𝐷 · (𝐹↑2))))
255254negeqd 11502 . . . . . . . . . . . . . . . . 17 (𝜑 → -((𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
256250, 255eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝜑 → (-(𝐷 · 𝐶) · (𝐹↑2)) = -(𝐶 · (𝐷 · (𝐹↑2))))
257256oveq2d 7447 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))))
25816, 36mulcld 11281 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐸↑2)) ∈ ℂ)
25916, 38mulcld 11281 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · (𝐷 · (𝐹↑2))) ∈ ℂ)
260258, 259negsubd 11626 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) + -(𝐶 · (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
26161oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = (𝐶 · 𝐶))
262 subdi 11696 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))))
263262eqcomd 2743 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ (𝐷 · (𝐹↑2)) ∈ ℂ) → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26416, 36, 38, 263syl3anc 1373 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶 · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
26516sqvald 14183 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐶↑2) = (𝐶 · 𝐶))
266261, 264, 2653eqtr4d 2787 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐶 · (𝐸↑2)) − (𝐶 · (𝐷 · (𝐹↑2)))) = (𝐶↑2))
267257, 260, 2663eqtrd 2781 . . . . . . . . . . . . . 14 (𝜑 → ((𝐶 · (𝐸↑2)) + (-(𝐷 · 𝐶) · (𝐹↑2))) = (𝐶↑2))
268223, 248, 2673eqtrd 2781 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴 · 𝐸)↑2) − (𝐷 · ((𝐵 · 𝐸)↑2))) + (((𝐷 · (𝐵 · 𝐹))↑2) − (𝐷 · ((𝐴 · 𝐹)↑2)))) = (𝐶↑2))
269193, 202, 2683eqtr2d 2783 . . . . . . . . . . . 12 (𝜑 → ((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹))))) = (𝐶↑2))
270183, 192, 2693eqtrd 2781 . . . . . . . . . . 11 (𝜑 → (((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) = (𝐶↑2))
271270oveq1d 7446 . . . . . . . . . 10 (𝜑 → ((((((𝐴 · 𝐸) · (𝐴 · 𝐸)) + ((𝐷 · (𝐵 · 𝐹)) · (𝐷 · (𝐵 · 𝐹)))) − (((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))) + ((𝐴 · 𝐸) · (𝐷 · (𝐵 · 𝐹))))) − (((𝐷 · ((𝐵 · 𝐸) · (𝐵 · 𝐸))) + (𝐷 · ((𝐴 · 𝐹) · (𝐴 · 𝐹)))) − ((𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹))) + (𝐷 · ((𝐵 · 𝐸) · (𝐴 · 𝐹)))))) / (𝐶↑2)) = ((𝐶↑2) / (𝐶↑2)))
272142, 145dividd 12041 . . . . . . . . . 10 (𝜑 → ((𝐶↑2) / (𝐶↑2)) = 1)
273170, 271, 2723eqtrd 2781 . . . . . . . . 9 (𝜑 → (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) · ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹)))) − (𝐷 · (((𝐵 · 𝐸) − (𝐴 · 𝐹)) · ((𝐵 · 𝐸) − (𝐴 · 𝐹))))) / (𝐶↑2)) = 1)
274151, 155, 2733eqtr2d 2783 . . . . . . . 8 (𝜑 → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
275274adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1)
276 simpr 484 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
277276fvoveq1d 7453 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = (abs‘(0 / 𝐶)))
27816, 17div0d 12042 . . . . . . . . . . . 12 (𝜑 → (0 / 𝐶) = 0)
279278abs00bd 15330 . . . . . . . . . . 11 (𝜑 → (abs‘(0 / 𝐶)) = 0)
280279adantr 480 . . . . . . . . . 10 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(0 / 𝐶)) = 0)
281277, 280eqtrd 2777 . . . . . . . . 9 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) = 0)
282281sq0id 14233 . . . . . . . 8 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) = 0)
283282oveq1d 7446 . . . . . . 7 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
284275, 283eqtr3d 2779 . . . . . 6 ((𝜑 ∧ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0) → 1 = (0 − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
285125, 284mtand 816 . . . . 5 (𝜑 → ¬ ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) = 0)
286285neqned 2947 . . . 4 (𝜑 → ((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) ≠ 0)
28714, 16, 286, 17divne0d 12059 . . 3 (𝜑 → (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0)
288 nnabscl 15364 . . 3 (((((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ∈ ℤ ∧ (((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶) ≠ 0) → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
289104, 287, 288syl2anc 584 . 2 (𝜑 → (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ)
290112, 16, 17absdivd 15494 . . . . 5 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) = ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)))
291 negsub 11557 . . . . . . . . . . . 12 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) + -(𝐴 · 𝐹)) = ((𝐵 · 𝐸) − (𝐴 · 𝐹)))
292291eqcomd 2743 . . . . . . . . . . 11 (((𝐵 · 𝐸) ∈ ℂ ∧ (𝐴 · 𝐹) ∈ ℂ) → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
293110, 111, 292syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) = ((𝐵 · 𝐸) + -(𝐴 · 𝐹)))
294293oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
295133renegcld 11690 . . . . . . . . . 10 (𝜑 → -(𝐴 · 𝐹) ∈ ℝ)
29611, 4mulcomd 11282 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝐸) = (𝐸 · 𝐹))
297296oveq1d 7446 . . . . . . . . . . 11 (𝜑 → ((𝐹 · 𝐸) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
298 modmul1 13965 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝐹 ∈ ℝ) ∧ (𝐸 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐵 mod (abs‘𝐶)) = (𝐹 mod (abs‘𝐶))) → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
29926, 27, 32, 31, 78, 298syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐹 · 𝐸) mod (abs‘𝐶)))
300 modmul1 13965 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐸 ∈ ℝ) ∧ (𝐹 ∈ ℤ ∧ (abs‘𝐶) ∈ ℝ+) ∧ (𝐴 mod (abs‘𝐶)) = (𝐸 mod (abs‘𝐶))) → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
30122, 23, 76, 31, 33, 300syl221anc 1383 . . . . . . . . . . 11 (𝜑 → ((𝐴 · 𝐹) mod (abs‘𝐶)) = ((𝐸 · 𝐹) mod (abs‘𝐶)))
302297, 299, 3013eqtr4d 2787 . . . . . . . . . 10 (𝜑 → ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶)))
303 modadd1 13948 . . . . . . . . . 10 ((((𝐵 · 𝐸) ∈ ℝ ∧ (𝐴 · 𝐹) ∈ ℝ) ∧ (-(𝐴 · 𝐹) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) ∧ ((𝐵 · 𝐸) mod (abs‘𝐶)) = ((𝐴 · 𝐹) mod (abs‘𝐶))) → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
304132, 133, 295, 31, 302, 303syl221anc 1383 . . . . . . . . 9 (𝜑 → (((𝐵 · 𝐸) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)))
305111negidd 11610 . . . . . . . . . 10 (𝜑 → ((𝐴 · 𝐹) + -(𝐴 · 𝐹)) = 0)
306305oveq1d 7446 . . . . . . . . 9 (𝜑 → (((𝐴 · 𝐹) + -(𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
307294, 304, 3063eqtrd 2781 . . . . . . . 8 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = (0 mod (abs‘𝐶)))
308307, 64eqtrd 2777 . . . . . . 7 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0)
309 absmod0 15342 . . . . . . . 8 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
310134, 31, 309syl2anc 584 . . . . . . 7 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0))
311308, 310mpbid 232 . . . . . 6 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0)
312112abscld 15475 . . . . . . 7 (𝜑 → (abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ)
313 mod0 13916 . . . . . . 7 (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) ∈ ℝ ∧ (abs‘𝐶) ∈ ℝ+) → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
314312, 31, 313syl2anc 584 . . . . . 6 (𝜑 → (((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) mod (abs‘𝐶)) = 0 ↔ ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ))
315311, 314mpbid 232 . . . . 5 (𝜑 → ((abs‘((𝐵 · 𝐸) − (𝐴 · 𝐹))) / (abs‘𝐶)) ∈ ℤ)
316290, 315eqeltrd 2841 . . . 4 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ)
317 absz 15350 . . . . 5 ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℝ → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
318135, 317syl 17 . . . 4 (𝜑 → ((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ↔ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℤ))
319316, 318mpbird 257 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ)
320 pellex.neq . . . . . . 7 (𝜑 → ¬ (𝐴 = 𝐸𝐵 = 𝐹))
32110nnne0d 12316 . . . . . . . . 9 (𝜑𝐹 ≠ 0)
3223nnne0d 12316 . . . . . . . . 9 (𝜑𝐸 ≠ 0)
3239, 11, 2, 4, 321, 322divmuleqd 12089 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) ↔ (𝐵 · 𝐸) = (𝐴 · 𝐹)))
32461adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐸↑2) − (𝐷 · (𝐹↑2))) = 𝐶)
325324eqcomd 2743 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐸↑2) − (𝐷 · (𝐹↑2))))
326325oveq2d 7447 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))))
3279, 11, 321divcld 12043 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℂ)
328327sqcld 14184 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹)↑2) ∈ ℂ)
329328adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) ∈ ℂ)
33036adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ∈ ℂ)
33138adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (𝐹↑2)) ∈ ℂ)
332329, 330, 331subdid 11719 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · ((𝐸↑2) − (𝐷 · (𝐹↑2)))) = ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))))
333 oveq1 7438 . . . . . . . . . . . . . . . . 17 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → ((𝐵 / 𝐹)↑2) = ((𝐴 / 𝐸)↑2))
334333oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
335334adantl 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (((𝐴 / 𝐸)↑2) · (𝐸↑2)))
3362adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐴 ∈ ℂ)
3374adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ∈ ℂ)
338322adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐸 ≠ 0)
339336, 337, 338sqdivd 14199 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐴 / 𝐸)↑2) = ((𝐴↑2) / (𝐸↑2)))
340339oveq1d 7446 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴 / 𝐸)↑2) · (𝐸↑2)) = (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)))
341219adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴↑2) ∈ ℂ)
342 sqne0 14163 . . . . . . . . . . . . . . . . . . 19 (𝐸 ∈ ℂ → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
3434, 342syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐸↑2) ≠ 0 ↔ 𝐸 ≠ 0))
344322, 343mpbird 257 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐸↑2) ≠ 0)
345344adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐸↑2) ≠ 0)
346341, 330, 345divcan1d 12044 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) / (𝐸↑2)) · (𝐸↑2)) = (𝐴↑2))
347335, 340, 3463eqtrd 2781 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐸↑2)) = (𝐴↑2))
3487adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐷 ∈ ℂ)
34937adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ∈ ℂ)
350329, 348, 349mul12d 11470 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))))
3519adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐵 ∈ ℂ)
35211adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ∈ ℂ)
353321adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐹 ≠ 0)
354351, 352, 353sqdivd 14199 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = ((𝐵↑2) / (𝐹↑2)))
355354oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐹↑2)) = (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)))
356355oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵 / 𝐹)↑2) · (𝐹↑2))) = (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))))
357206adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐵↑2) ∈ ℂ)
358 sqne0 14163 . . . . . . . . . . . . . . . . . . . 20 (𝐹 ∈ ℂ → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
35911, 358syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐹↑2) ≠ 0 ↔ 𝐹 ≠ 0))
360321, 359mpbird 257 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹↑2) ≠ 0)
361360adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐹↑2) ≠ 0)
362357, 349, 361divcan1d 12044 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2)) = (𝐵↑2))
363362oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐷 · (((𝐵↑2) / (𝐹↑2)) · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
364350, 356, 3633eqtrd 2781 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2))) = (𝐷 · (𝐵↑2)))
365347, 364oveq12d 7449 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · (𝐸↑2)) − (((𝐵 / 𝐹)↑2) · (𝐷 · (𝐹↑2)))) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
366326, 332, 3653eqtrd 2781 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) · 𝐶) = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
367226eqcomd 2743 . . . . . . . . . . . . 13 (𝜑𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
368367adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 = ((𝐴↑2) − (𝐷 · (𝐵↑2))))
369366, 368oveq12d 7449 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))))
37016adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ∈ ℂ)
37117adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → 𝐶 ≠ 0)
372329, 370, 371divcan4d 12049 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((((𝐵 / 𝐹)↑2) · 𝐶) / 𝐶) = ((𝐵 / 𝐹)↑2))
373226, 226oveq12d 7449 . . . . . . . . . . . . 13 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = (𝐶 / 𝐶))
37416, 17dividd 12041 . . . . . . . . . . . . 13 (𝜑 → (𝐶 / 𝐶) = 1)
375373, 374eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
376375adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐴↑2) − (𝐷 · (𝐵↑2))) / ((𝐴↑2) − (𝐷 · (𝐵↑2)))) = 1)
377369, 372, 3763eqtr3d 2785 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹)↑2) = 1)
37826, 27, 321redivcld 12095 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐵 / 𝐹) ∈ ℝ)
3798nnnn0d 12587 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℕ0)
380379nn0ge0d 12590 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝐵)
38110nngt0d 12315 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 < 𝐹)
382 divge0 12137 . . . . . . . . . . . . . . . . 17 (((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ (𝐹 ∈ ℝ ∧ 0 < 𝐹)) → 0 ≤ (𝐵 / 𝐹))
38326, 380, 27, 381, 382syl22anc 839 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ (𝐵 / 𝐹))
384378, 383sqrtsqd 15458 . . . . . . . . . . . . . . 15 (𝜑 → (√‘((𝐵 / 𝐹)↑2)) = (𝐵 / 𝐹))
385384eqcomd 2743 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
386385ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = (√‘((𝐵 / 𝐹)↑2)))
387 fveq2 6906 . . . . . . . . . . . . . 14 (((𝐵 / 𝐹)↑2) = 1 → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
388387adantl 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘((𝐵 / 𝐹)↑2)) = (√‘1))
389 sqrt1 15310 . . . . . . . . . . . . . 14 (√‘1) = 1
390389a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (√‘1) = 1)
391386, 388, 3903eqtrd 2781 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ ((𝐵 / 𝐹)↑2) = 1) → (𝐵 / 𝐹) = 1)
392391ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐵 / 𝐹) = 1))
393 simplr 769 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = (𝐴 / 𝐸))
394 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐵 / 𝐹) = 1)
395393, 394eqtr3d 2779 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 / 𝐸) = 1)
396395oveq1d 7446 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = (1 · 𝐸))
3972, 4, 322divcan1d 12044 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
398397ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐴 / 𝐸) · 𝐸) = 𝐴)
3994mullidd 11279 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐸) = 𝐸)
400399ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐸) = 𝐸)
401396, 398, 4003eqtr3d 2785 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐴 = 𝐸)
402394oveq1d 7446 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = (1 · 𝐹))
4039, 11, 321divcan1d 12044 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
404403ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → ((𝐵 / 𝐹) · 𝐹) = 𝐵)
40511mullidd 11279 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝐹) = 𝐹)
406405ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (1 · 𝐹) = 𝐹)
407402, 404, 4063eqtr3d 2785 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → 𝐵 = 𝐹)
408401, 407jca 511 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) ∧ (𝐵 / 𝐹) = 1) → (𝐴 = 𝐸𝐵 = 𝐹))
409408ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → ((𝐵 / 𝐹) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
410392, 409syld 47 . . . . . . . . . 10 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (((𝐵 / 𝐹)↑2) = 1 → (𝐴 = 𝐸𝐵 = 𝐹)))
411377, 410mpd 15 . . . . . . . . 9 ((𝜑 ∧ (𝐵 / 𝐹) = (𝐴 / 𝐸)) → (𝐴 = 𝐸𝐵 = 𝐹))
412411ex 412 . . . . . . . 8 (𝜑 → ((𝐵 / 𝐹) = (𝐴 / 𝐸) → (𝐴 = 𝐸𝐵 = 𝐹)))
413323, 412sylbird 260 . . . . . . 7 (𝜑 → ((𝐵 · 𝐸) = (𝐴 · 𝐹) → (𝐴 = 𝐸𝐵 = 𝐹)))
414320, 413mtod 198 . . . . . 6 (𝜑 → ¬ (𝐵 · 𝐸) = (𝐴 · 𝐹))
415414neqned 2947 . . . . 5 (𝜑 → (𝐵 · 𝐸) ≠ (𝐴 · 𝐹))
416110, 111, 415subne0d 11629 . . . 4 (𝜑 → ((𝐵 · 𝐸) − (𝐴 · 𝐹)) ≠ 0)
417112, 16, 416, 17divne0d 12059 . . 3 (𝜑 → (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0)
418 nnabscl 15364 . . 3 (((((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ∈ ℤ ∧ (((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶) ≠ 0) → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
419319, 417, 418syl2anc 584 . 2 (𝜑 → (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ)
420 oveq1 7438 . . . . 5 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (𝑎↑2) = ((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2))
421420oveq1d 7446 . . . 4 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → ((𝑎↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))))
422421eqeq1d 2739 . . 3 (𝑎 = (abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) → (((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1))
423 oveq1 7438 . . . . . 6 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝑏↑2) = ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))
424423oveq2d 7447 . . . . 5 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (𝐷 · (𝑏↑2)) = (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2)))
425424oveq2d 7447 . . . 4 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))))
426425eqeq1d 2739 . . 3 (𝑏 = (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) → ((((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · (𝑏↑2))) = 1 ↔ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1))
427422, 426rspc2ev 3635 . 2 (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶)) ∈ ℕ ∧ (abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶)) ∈ ℕ ∧ (((abs‘(((𝐴 · 𝐸) − (𝐷 · (𝐵 · 𝐹))) / 𝐶))↑2) − (𝐷 · ((abs‘(((𝐵 · 𝐸) − (𝐴 · 𝐹)) / 𝐶))↑2))) = 1) → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
428289, 419, 274, 427syl3anc 1373 1 (𝜑 → ∃𝑎 ∈ ℕ ∃𝑏 ∈ ℕ ((𝑎↑2) − (𝐷 · (𝑏↑2))) = 1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  2c2 12321  cz 12613  cq 12990  +crp 13034   mod cmo 13909  cexp 14102  csqrt 15272  abscabs 15273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by:  pellex  42846
  Copyright terms: Public domain W3C validator