MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanadd Structured version   Visualization version   GIF version

Theorem tanadd 15804
Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanadd (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))

Proof of Theorem tanadd
StepHypRef Expression
1 addcl 10884 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
21adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (𝐴 + 𝐵) ∈ ℂ)
3 simpr3 1194 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘(𝐴 + 𝐵)) ≠ 0)
4 tanval 15765 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ (cos‘(𝐴 + 𝐵)) ≠ 0) → (tan‘(𝐴 + 𝐵)) = ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))))
52, 3, 4syl2anc 583 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))))
6 sinadd 15801 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
76adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
8 cosadd 15802 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
98adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
107, 9oveq12d 7273 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))) = ((((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))))
11 simpll 763 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 𝐴 ∈ ℂ)
1211coscld 15768 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐴) ∈ ℂ)
13 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 𝐵 ∈ ℂ)
1413coscld 15768 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐵) ∈ ℂ)
1512, 14mulcld 10926 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
16 simpr1 1192 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐴) ≠ 0)
1711, 16tancld 15769 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐴) ∈ ℂ)
18 simpr2 1193 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐵) ≠ 0)
1913, 18tancld 15769 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐵) ∈ ℂ)
2015, 17, 19adddid 10930 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) + (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵))))
2112, 14, 17mul32d 11115 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) = (((cos‘𝐴) · (tan‘𝐴)) · (cos‘𝐵)))
22 tanval 15765 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2311, 16, 22syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2423oveq2d 7271 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (tan‘𝐴)) = ((cos‘𝐴) · ((sin‘𝐴) / (cos‘𝐴))))
2511sincld 15767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (sin‘𝐴) ∈ ℂ)
2625, 12, 16divcan2d 11683 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · ((sin‘𝐴) / (cos‘𝐴))) = (sin‘𝐴))
2724, 26eqtrd 2778 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (tan‘𝐴)) = (sin‘𝐴))
2827oveq1d 7270 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (tan‘𝐴)) · (cos‘𝐵)) = ((sin‘𝐴) · (cos‘𝐵)))
2921, 28eqtrd 2778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) = ((sin‘𝐴) · (cos‘𝐵)))
3012, 14, 19mulassd 10929 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵)) = ((cos‘𝐴) · ((cos‘𝐵) · (tan‘𝐵))))
31 tanval 15765 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (cos‘𝐵) ≠ 0) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
3213, 18, 31syl2anc 583 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
3332oveq2d 7271 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐵) · (tan‘𝐵)) = ((cos‘𝐵) · ((sin‘𝐵) / (cos‘𝐵))))
3413sincld 15767 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (sin‘𝐵) ∈ ℂ)
3534, 14, 18divcan2d 11683 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐵) · ((sin‘𝐵) / (cos‘𝐵))) = (sin‘𝐵))
3633, 35eqtrd 2778 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐵) · (tan‘𝐵)) = (sin‘𝐵))
3736oveq2d 7271 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · ((cos‘𝐵) · (tan‘𝐵))) = ((cos‘𝐴) · (sin‘𝐵)))
3830, 37eqtrd 2778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵)) = ((cos‘𝐴) · (sin‘𝐵)))
3929, 38oveq12d 7273 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) + (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
4020, 39eqtrd 2778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
41 1cnd 10901 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 1 ∈ ℂ)
4217, 19mulcld 10926 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ)
4315, 41, 42subdid 11361 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) · 1) − (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵)))))
4415mulid1d 10923 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · 1) = ((cos‘𝐴) · (cos‘𝐵)))
4512, 14, 17, 19mul4d 11117 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵))) = (((cos‘𝐴) · (tan‘𝐴)) · ((cos‘𝐵) · (tan‘𝐵))))
4627, 36oveq12d 7273 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (tan‘𝐴)) · ((cos‘𝐵) · (tan‘𝐵))) = ((sin‘𝐴) · (sin‘𝐵)))
4745, 46eqtrd 2778 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵))) = ((sin‘𝐴) · (sin‘𝐵)))
4844, 47oveq12d 7273 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · 1) − (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵)))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
4943, 48eqtrd 2778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵)))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
5040, 49oveq12d 7273 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵))))) = ((((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))))
5117, 19addcld 10925 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((tan‘𝐴) + (tan‘𝐵)) ∈ ℂ)
52 ax-1cn 10860 . . . . 5 1 ∈ ℂ
53 subcl 11150 . . . . 5 ((1 ∈ ℂ ∧ ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ) → (1 − ((tan‘𝐴) · (tan‘𝐵))) ∈ ℂ)
5452, 42, 53sylancr 586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (1 − ((tan‘𝐴) · (tan‘𝐵))) ∈ ℂ)
55 tanaddlem 15803 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1))
56553adantr3 1169 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1))
573, 56mpbid 231 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)
5857necomd 2998 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 1 ≠ ((tan‘𝐴) · (tan‘𝐵)))
59 subeq0 11177 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ) → ((1 − ((tan‘𝐴) · (tan‘𝐵))) = 0 ↔ 1 = ((tan‘𝐴) · (tan‘𝐵))))
6059necon3bid 2987 . . . . . 6 ((1 ∈ ℂ ∧ ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ) → ((1 − ((tan‘𝐴) · (tan‘𝐵))) ≠ 0 ↔ 1 ≠ ((tan‘𝐴) · (tan‘𝐵))))
6152, 42, 60sylancr 586 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((1 − ((tan‘𝐴) · (tan‘𝐵))) ≠ 0 ↔ 1 ≠ ((tan‘𝐴) · (tan‘𝐵))))
6258, 61mpbird 256 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (1 − ((tan‘𝐴) · (tan‘𝐵))) ≠ 0)
6312, 14, 16, 18mulne0d 11557 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (cos‘𝐵)) ≠ 0)
6451, 54, 15, 62, 63divcan5d 11707 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵))))) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))
6510, 50, 643eqtr2rd 2785 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))) = ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))))
665, 65eqtr4d 2781 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  sincsin 15701  cosccos 15702  tanctan 15703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709
This theorem is referenced by:  tanregt0  25600
  Copyright terms: Public domain W3C validator