MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanadd Structured version   Visualization version   GIF version

Theorem tanadd 16080
Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015.)
Assertion
Ref Expression
tanadd (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))

Proof of Theorem tanadd
StepHypRef Expression
1 addcl 11097 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
21adantr 480 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (𝐴 + 𝐵) ∈ ℂ)
3 simpr3 1197 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘(𝐴 + 𝐵)) ≠ 0)
4 tanval 16041 . . 3 (((𝐴 + 𝐵) ∈ ℂ ∧ (cos‘(𝐴 + 𝐵)) ≠ 0) → (tan‘(𝐴 + 𝐵)) = ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))))
52, 3, 4syl2anc 584 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))))
6 sinadd 16077 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
76adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
8 cosadd 16078 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
98adantr 480 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
107, 9oveq12d 7372 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))) = ((((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))))
11 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 𝐴 ∈ ℂ)
1211coscld 16044 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐴) ∈ ℂ)
13 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 𝐵 ∈ ℂ)
1413coscld 16044 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐵) ∈ ℂ)
1512, 14mulcld 11141 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (cos‘𝐵)) ∈ ℂ)
16 simpr1 1195 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐴) ≠ 0)
1711, 16tancld 16045 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐴) ∈ ℂ)
18 simpr2 1196 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (cos‘𝐵) ≠ 0)
1913, 18tancld 16045 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐵) ∈ ℂ)
2015, 17, 19adddid 11145 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) = ((((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) + (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵))))
2112, 14, 17mul32d 11332 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) = (((cos‘𝐴) · (tan‘𝐴)) · (cos‘𝐵)))
22 tanval 16041 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2311, 16, 22syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
2423oveq2d 7370 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (tan‘𝐴)) = ((cos‘𝐴) · ((sin‘𝐴) / (cos‘𝐴))))
2511sincld 16043 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (sin‘𝐴) ∈ ℂ)
2625, 12, 16divcan2d 11908 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · ((sin‘𝐴) / (cos‘𝐴))) = (sin‘𝐴))
2724, 26eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (tan‘𝐴)) = (sin‘𝐴))
2827oveq1d 7369 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (tan‘𝐴)) · (cos‘𝐵)) = ((sin‘𝐴) · (cos‘𝐵)))
2921, 28eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) = ((sin‘𝐴) · (cos‘𝐵)))
3012, 14, 19mulassd 11144 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵)) = ((cos‘𝐴) · ((cos‘𝐵) · (tan‘𝐵))))
31 tanval 16041 . . . . . . . . . . 11 ((𝐵 ∈ ℂ ∧ (cos‘𝐵) ≠ 0) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
3213, 18, 31syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘𝐵) = ((sin‘𝐵) / (cos‘𝐵)))
3332oveq2d 7370 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐵) · (tan‘𝐵)) = ((cos‘𝐵) · ((sin‘𝐵) / (cos‘𝐵))))
3413sincld 16043 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (sin‘𝐵) ∈ ℂ)
3534, 14, 18divcan2d 11908 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐵) · ((sin‘𝐵) / (cos‘𝐵))) = (sin‘𝐵))
3633, 35eqtrd 2768 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐵) · (tan‘𝐵)) = (sin‘𝐵))
3736oveq2d 7370 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · ((cos‘𝐵) · (tan‘𝐵))) = ((cos‘𝐴) · (sin‘𝐵)))
3830, 37eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵)) = ((cos‘𝐴) · (sin‘𝐵)))
3929, 38oveq12d 7372 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐴)) + (((cos‘𝐴) · (cos‘𝐵)) · (tan‘𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
4020, 39eqtrd 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))))
41 1cnd 11116 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 1 ∈ ℂ)
4217, 19mulcld 11141 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ)
4315, 41, 42subdid 11582 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵)))) = ((((cos‘𝐴) · (cos‘𝐵)) · 1) − (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵)))))
4415mulridd 11138 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · 1) = ((cos‘𝐴) · (cos‘𝐵)))
4512, 14, 17, 19mul4d 11334 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵))) = (((cos‘𝐴) · (tan‘𝐴)) · ((cos‘𝐵) · (tan‘𝐵))))
4627, 36oveq12d 7372 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (tan‘𝐴)) · ((cos‘𝐵) · (tan‘𝐵))) = ((sin‘𝐴) · (sin‘𝐵)))
4745, 46eqtrd 2768 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵))) = ((sin‘𝐴) · (sin‘𝐵)))
4844, 47oveq12d 7372 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · 1) − (((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) · (tan‘𝐵)))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
4943, 48eqtrd 2768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵)))) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵))))
5040, 49oveq12d 7372 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵))))) = ((((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))))
5117, 19addcld 11140 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((tan‘𝐴) + (tan‘𝐵)) ∈ ℂ)
52 ax-1cn 11073 . . . . 5 1 ∈ ℂ
53 subcl 11368 . . . . 5 ((1 ∈ ℂ ∧ ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ) → (1 − ((tan‘𝐴) · (tan‘𝐵))) ∈ ℂ)
5452, 42, 53sylancr 587 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (1 − ((tan‘𝐴) · (tan‘𝐵))) ∈ ℂ)
55 tanaddlem 16079 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1))
56553adantr3 1172 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘(𝐴 + 𝐵)) ≠ 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) ≠ 1))
573, 56mpbid 232 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((tan‘𝐴) · (tan‘𝐵)) ≠ 1)
5857necomd 2984 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → 1 ≠ ((tan‘𝐴) · (tan‘𝐵)))
59 subeq0 11396 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ) → ((1 − ((tan‘𝐴) · (tan‘𝐵))) = 0 ↔ 1 = ((tan‘𝐴) · (tan‘𝐵))))
6059necon3bid 2973 . . . . . 6 ((1 ∈ ℂ ∧ ((tan‘𝐴) · (tan‘𝐵)) ∈ ℂ) → ((1 − ((tan‘𝐴) · (tan‘𝐵))) ≠ 0 ↔ 1 ≠ ((tan‘𝐴) · (tan‘𝐵))))
6152, 42, 60sylancr 587 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((1 − ((tan‘𝐴) · (tan‘𝐵))) ≠ 0 ↔ 1 ≠ ((tan‘𝐴) · (tan‘𝐵))))
6258, 61mpbird 257 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (1 − ((tan‘𝐴) · (tan‘𝐵))) ≠ 0)
6312, 14, 16, 18mulne0d 11778 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((cos‘𝐴) · (cos‘𝐵)) ≠ 0)
6451, 54, 15, 62, 63divcan5d 11932 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → ((((cos‘𝐴) · (cos‘𝐵)) · ((tan‘𝐴) + (tan‘𝐵))) / (((cos‘𝐴) · (cos‘𝐵)) · (1 − ((tan‘𝐴) · (tan‘𝐵))))) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))
6510, 50, 643eqtr2rd 2775 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))) = ((sin‘(𝐴 + 𝐵)) / (cos‘(𝐴 + 𝐵))))
665, 65eqtr4d 2771 1 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) ≠ 0 ∧ (cos‘𝐵) ≠ 0 ∧ (cos‘(𝐴 + 𝐵)) ≠ 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  cfv 6488  (class class class)co 7354  cc 11013  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  cmin 11353   / cdiv 11783  sincsin 15974  cosccos 15975  tanctan 15976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-ico 13255  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-tan 15982
This theorem is referenced by:  tanregt0  26478
  Copyright terms: Public domain W3C validator