MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem1 Structured version   Visualization version   GIF version

Theorem chtppilimlem1 25510
Description: Lemma for chtppilim 25512. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
chtppilim.3 (𝜑𝑁 ∈ (2[,)+∞))
chtppilim.4 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
Assertion
Ref Expression
chtppilimlem1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))

Proof of Theorem chtppilimlem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chtppilim.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
21rpred 12113 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 10355 . . . . 5 (𝜑𝐴 ∈ ℂ)
43sqvald 13255 . . . 4 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
54oveq1d 6891 . . 3 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))))
6 chtppilim.3 . . . . . . . . 9 (𝜑𝑁 ∈ (2[,)+∞))
7 2re 11383 . . . . . . . . . 10 2 ∈ ℝ
8 elicopnf 12515 . . . . . . . . . 10 (2 ∈ ℝ → (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁)))
97, 8ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
106, 9sylib 210 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
1110simpld 489 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
12 ppicl 25205 . . . . . . 7 (𝑁 ∈ ℝ → (π𝑁) ∈ ℕ0)
1311, 12syl 17 . . . . . 6 (𝜑 → (π𝑁) ∈ ℕ0)
1413nn0red 11637 . . . . 5 (𝜑 → (π𝑁) ∈ ℝ)
1514recnd 10355 . . . 4 (𝜑 → (π𝑁) ∈ ℂ)
16 0red 10330 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
177a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
18 2pos 11419 . . . . . . . . 9 0 < 2
1918a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
2010simprd 490 . . . . . . . 8 (𝜑 → 2 ≤ 𝑁)
2116, 17, 11, 19, 20ltletrd 10485 . . . . . . 7 (𝜑 → 0 < 𝑁)
2211, 21elrpd 12110 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
2322relogcld 24706 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
2423recnd 10355 . . . 4 (𝜑 → (log‘𝑁) ∈ ℂ)
253, 3, 15, 24mul4d 10536 . . 3 (𝜑 → ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
265, 25eqtrd 2831 . 2 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
272, 14remulcld 10357 . . . 4 (𝜑 → (𝐴 · (π𝑁)) ∈ ℝ)
282, 23remulcld 10357 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ)
2927, 28remulcld 10357 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) ∈ ℝ)
3022, 2rpcxpcld 24815 . . . . . . . 8 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ+)
3130rpred 12113 . . . . . . 7 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ)
32 ppicl 25205 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3331, 32syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3433nn0red 11637 . . . . 5 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℝ)
3514, 34resubcld 10748 . . . 4 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) ∈ ℝ)
3635, 28remulcld 10357 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ∈ ℝ)
37 chtcl 25183 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
3811, 37syl 17 . . 3 (𝜑 → (θ‘𝑁) ∈ ℝ)
39 1red 10327 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
40 1lt2 11487 . . . . . . . 8 1 < 2
4140a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
4239, 17, 11, 41, 20ltletrd 10485 . . . . . 6 (𝜑 → 1 < 𝑁)
4311, 42rplogcld 24712 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
441, 43rpmulcld 12129 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ+)
4514, 31resubcld 10748 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) ∈ ℝ)
46 ppinncl 25248 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (π𝑁) ∈ ℕ)
4831, 47nndivred 11363 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) ∈ ℝ)
49 chtppilim.4 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
5048, 39, 2, 49ltsub13d 10923 . . . . . . 7 (𝜑𝐴 < (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5131recnd 10355 . . . . . . . . 9 (𝜑 → (𝑁𝑐𝐴) ∈ ℂ)
5247nnrpd 12111 . . . . . . . . . 10 (𝜑 → (π𝑁) ∈ ℝ+)
5352rpcnne0d 12122 . . . . . . . . 9 (𝜑 → ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0))
54 divsubdir 11011 . . . . . . . . 9 (((π𝑁) ∈ ℂ ∧ (𝑁𝑐𝐴) ∈ ℂ ∧ ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0)) → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
5515, 51, 53, 54syl3anc 1491 . . . . . . . 8 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
56 divid 11004 . . . . . . . . . 10 (((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0) → ((π𝑁) / (π𝑁)) = 1)
5753, 56syl 17 . . . . . . . . 9 (𝜑 → ((π𝑁) / (π𝑁)) = 1)
5857oveq1d 6891 . . . . . . . 8 (𝜑 → (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5955, 58eqtrd 2831 . . . . . . 7 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
6050, 59breqtrrd 4869 . . . . . 6 (𝜑𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)))
612, 45, 52ltmuldivd 12160 . . . . . 6 (𝜑 → ((𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)) ↔ 𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁))))
6260, 61mpbird 249 . . . . 5 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)))
63 ppiltx 25251 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ+ → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6430, 63syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6534, 31, 14, 64ltsub2dd 10930 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6627, 45, 35, 62, 65lttrd 10486 . . . 4 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6727, 35, 44, 66ltmul1dd 12168 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
68 fzfid 13023 . . . . . 6 (𝜑 → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin)
69 inss1 4026 . . . . . 6 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))
70 ssfi 8420 . . . . . 6 (((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin ∧ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
7168, 69, 70sylancl 581 . . . . 5 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
72 inss2 4027 . . . . . . . 8 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ℙ
73 simpr 478 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ))
7472, 73sseldi 3794 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
75 prmnn 15718 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7675nnrpd 12111 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
7774, 76syl 17 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
7877relogcld 24706 . . . . 5 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
7971, 78fsumrecl 14802 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ∈ ℝ)
8028recnd 10355 . . . . . . 7 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℂ)
81 fsumconst 14856 . . . . . . 7 ((((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin ∧ (𝐴 · (log‘𝑁)) ∈ ℂ) → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
8271, 80, 81syl2anc 580 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
83 ppifl 25234 . . . . . . . . . 10 (𝑁 ∈ ℝ → (π‘(⌊‘𝑁)) = (π𝑁))
8411, 83syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘𝑁)) = (π𝑁))
85 ppifl 25234 . . . . . . . . . 10 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8631, 85syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8784, 86oveq12d 6894 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = ((π𝑁) − (π‘(𝑁𝑐𝐴))))
8839, 11, 42ltled 10473 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
89 chtppilim.2 . . . . . . . . . . . . 13 (𝜑𝐴 < 1)
90 1re 10326 . . . . . . . . . . . . . 14 1 ∈ ℝ
91 ltle 10414 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 → 𝐴 ≤ 1))
922, 90, 91sylancl 581 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 1 → 𝐴 ≤ 1))
9389, 92mpd 15 . . . . . . . . . . . 12 (𝜑𝐴 ≤ 1)
9411, 88, 2, 39, 93cxplead 24804 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐𝐴) ≤ (𝑁𝑐1))
9511recnd 10355 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
9695cxp1d 24789 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐1) = 𝑁)
9794, 96breqtrd 4867 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ 𝑁)
98 flword2 12865 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁𝑐𝐴) ≤ 𝑁) → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
9931, 11, 97, 98syl3anc 1491 . . . . . . . . 9 (𝜑 → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
100 ppidif 25237 . . . . . . . . 9 ((⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))) → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10199, 100syl 17 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10287, 101eqtr3d 2833 . . . . . . 7 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
103102oveq1d 6891 . . . . . 6 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
10482, 103eqtr4d 2834 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
10528adantr 473 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ∈ ℝ)
10631adantr 473 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ∈ ℝ)
107 reflcl 12848 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (⌊‘(𝑁𝑐𝐴)) ∈ ℝ)
108 peano2re 10497 . . . . . . . . . . 11 ((⌊‘(𝑁𝑐𝐴)) ∈ ℝ → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
10931, 107, 1083syl 18 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
110109adantr 473 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
11177rpred 12113 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
112 fllep1 12853 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11331, 112syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
114113adantr 473 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11569, 73sseldi 3794 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)))
116 elfzle1 12594 . . . . . . . . . 10 (𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
117115, 116syl 17 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
118106, 110, 111, 114, 117letrd 10482 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ 𝑝)
11922rpne0d 12118 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
12095, 119, 3cxpefd 24795 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) = (exp‘(𝐴 · (log‘𝑁))))
121120eqcomd 2803 . . . . . . . . 9 (𝜑 → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
122121adantr 473 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
12377reeflogd 24707 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
124118, 122, 1233brtr4d 4873 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝)))
125 efle 15180 . . . . . . . 8 (((𝐴 · (log‘𝑁)) ∈ ℝ ∧ (log‘𝑝) ∈ ℝ) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
126105, 78, 125syl2anc 580 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
127124, 126mpbird 249 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ≤ (log‘𝑝))
12871, 105, 78, 127fsumle 14865 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
129104, 128eqbrtrrd 4865 . . . 4 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
130 fzfid 13023 . . . . . . 7 (𝜑 → (1...(⌊‘𝑁)) ∈ Fin)
131 inss1 4026 . . . . . . 7 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))
132 ssfi 8420 . . . . . . 7 (((1...(⌊‘𝑁)) ∈ Fin ∧ ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))) → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
133130, 131, 132sylancl 581 . . . . . 6 (𝜑 → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
134 inss2 4027 . . . . . . . . . . . . 13 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ ℙ
135 simpr 478 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ))
136134, 135sseldi 3794 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
137 prmuz2 15738 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
138136, 137syl 17 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
139 eluz2b2 12002 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
140138, 139sylib 210 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
141140simpld 489 . . . . . . . . 9 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℕ)
142141nnred 11327 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
143140simprd 490 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 1 < 𝑝)
144142, 143rplogcld 24712 . . . . . . 7 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
145144rpred 12113 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
146144rpge0d 12117 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
14730rpge0d 12117 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑁𝑐𝐴))
148 flge0nn0 12872 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 0 ≤ (𝑁𝑐𝐴)) → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
14931, 147, 148syl2anc 580 . . . . . . . . 9 (𝜑 → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
150 nn0p1nn 11617 . . . . . . . . 9 ((⌊‘(𝑁𝑐𝐴)) ∈ ℕ0 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
151149, 150syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
152 nnuz 11963 . . . . . . . 8 ℕ = (ℤ‘1)
153151, 152syl6eleq 2886 . . . . . . 7 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1))
154 fzss1 12630 . . . . . . 7 (((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)))
155 ssrin 4031 . . . . . . 7 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
156153, 154, 1553syl 18 . . . . . 6 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
157133, 145, 146, 156fsumless 14862 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
158 chtval 25184 . . . . . . 7 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
15911, 158syl 17 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
160 2eluzge1 11974 . . . . . . . 8 2 ∈ (ℤ‘1)
161 ppisval2 25179 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
16211, 160, 161sylancl 581 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
163162sumeq1d 14768 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
164159, 163eqtrd 2831 . . . . 5 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
165157, 164breqtrrd 4869 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ (θ‘𝑁))
16636, 79, 38, 129, 165letrd 10482 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ (θ‘𝑁))
16729, 36, 38, 67, 166ltletrd 10485 . 2 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (θ‘𝑁))
16826, 167eqbrtrd 4863 1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wne 2969  cin 3766  wss 3767   class class class wbr 4841  cfv 6099  (class class class)co 6876  Fincfn 8193  cc 10220  cr 10221  0cc0 10222  1c1 10223   + caddc 10225   · cmul 10227  +∞cpnf 10358   < clt 10361  cle 10362  cmin 10554   / cdiv 10974  cn 11310  2c2 11364  0cn0 11576  cuz 11926  +crp 12070  [,)cico 12422  [,]cicc 12423  ...cfz 12576  cfl 12842  cexp 13110  chash 13366  Σcsu 14753  expce 15124  cprime 15715  logclog 24638  𝑐ccxp 24639  θccht 25165  πcppi 25168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-inf2 8786  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-pre-sup 10300  ax-addf 10301  ax-mulf 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-of 7129  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-2o 7798  df-oadd 7801  df-er 7980  df-map 8095  df-pm 8096  df-ixp 8147  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-fi 8557  df-sup 8588  df-inf 8589  df-oi 8655  df-card 9049  df-cda 9276  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-div 10975  df-nn 11311  df-2 11372  df-3 11373  df-4 11374  df-5 11375  df-6 11376  df-7 11377  df-8 11378  df-9 11379  df-n0 11577  df-xnn0 11649  df-z 11663  df-dec 11780  df-uz 11927  df-q 12030  df-rp 12071  df-xneg 12189  df-xadd 12190  df-xmul 12191  df-ioo 12424  df-ioc 12425  df-ico 12426  df-icc 12427  df-fz 12577  df-fzo 12717  df-fl 12844  df-mod 12920  df-seq 13052  df-exp 13111  df-fac 13310  df-bc 13339  df-hash 13367  df-shft 14144  df-cj 14176  df-re 14177  df-im 14178  df-sqrt 14312  df-abs 14313  df-limsup 14539  df-clim 14556  df-rlim 14557  df-sum 14754  df-ef 15130  df-sin 15132  df-cos 15133  df-pi 15135  df-dvds 15316  df-prm 15716  df-struct 16182  df-ndx 16183  df-slot 16184  df-base 16186  df-sets 16187  df-ress 16188  df-plusg 16276  df-mulr 16277  df-starv 16278  df-sca 16279  df-vsca 16280  df-ip 16281  df-tset 16282  df-ple 16283  df-ds 16285  df-unif 16286  df-hom 16287  df-cco 16288  df-rest 16394  df-topn 16395  df-0g 16413  df-gsum 16414  df-topgen 16415  df-pt 16416  df-prds 16419  df-xrs 16473  df-qtop 16478  df-imas 16479  df-xps 16481  df-mre 16557  df-mrc 16558  df-acs 16560  df-mgm 17553  df-sgrp 17595  df-mnd 17606  df-submnd 17647  df-mulg 17853  df-cntz 18058  df-cmn 18506  df-psmet 20056  df-xmet 20057  df-met 20058  df-bl 20059  df-mopn 20060  df-fbas 20061  df-fg 20062  df-cnfld 20065  df-top 21023  df-topon 21040  df-topsp 21062  df-bases 21075  df-cld 21148  df-ntr 21149  df-cls 21150  df-nei 21227  df-lp 21265  df-perf 21266  df-cn 21356  df-cnp 21357  df-haus 21444  df-tx 21690  df-hmeo 21883  df-fil 21974  df-fm 22066  df-flim 22067  df-flf 22068  df-xms 22449  df-ms 22450  df-tms 22451  df-cncf 23005  df-limc 23967  df-dv 23968  df-log 24640  df-cxp 24641  df-cht 25171  df-ppi 25174
This theorem is referenced by:  chtppilimlem2  25511
  Copyright terms: Public domain W3C validator