MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem1 Structured version   Visualization version   GIF version

Theorem chtppilimlem1 27409
Description: Lemma for chtppilim 27411. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
chtppilim.3 (𝜑𝑁 ∈ (2[,)+∞))
chtppilim.4 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
Assertion
Ref Expression
chtppilimlem1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))

Proof of Theorem chtppilimlem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chtppilim.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
21rpred 12931 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 11137 . . . . 5 (𝜑𝐴 ∈ ℂ)
43sqvald 14047 . . . 4 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
54oveq1d 7361 . . 3 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))))
6 chtppilim.3 . . . . . . . . 9 (𝜑𝑁 ∈ (2[,)+∞))
7 2re 12196 . . . . . . . . . 10 2 ∈ ℝ
8 elicopnf 13342 . . . . . . . . . 10 (2 ∈ ℝ → (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁)))
97, 8ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
106, 9sylib 218 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
1110simpld 494 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
12 ppicl 27066 . . . . . . 7 (𝑁 ∈ ℝ → (π𝑁) ∈ ℕ0)
1311, 12syl 17 . . . . . 6 (𝜑 → (π𝑁) ∈ ℕ0)
1413nn0red 12440 . . . . 5 (𝜑 → (π𝑁) ∈ ℝ)
1514recnd 11137 . . . 4 (𝜑 → (π𝑁) ∈ ℂ)
16 0red 11112 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
177a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
18 2pos 12225 . . . . . . . . 9 0 < 2
1918a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
2010simprd 495 . . . . . . . 8 (𝜑 → 2 ≤ 𝑁)
2116, 17, 11, 19, 20ltletrd 11270 . . . . . . 7 (𝜑 → 0 < 𝑁)
2211, 21elrpd 12928 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
2322relogcld 26557 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
2423recnd 11137 . . . 4 (𝜑 → (log‘𝑁) ∈ ℂ)
253, 3, 15, 24mul4d 11322 . . 3 (𝜑 → ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
265, 25eqtrd 2766 . 2 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
272, 14remulcld 11139 . . . 4 (𝜑 → (𝐴 · (π𝑁)) ∈ ℝ)
282, 23remulcld 11139 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ)
2927, 28remulcld 11139 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) ∈ ℝ)
3022, 2rpcxpcld 26667 . . . . . . . 8 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ+)
3130rpred 12931 . . . . . . 7 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ)
32 ppicl 27066 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3331, 32syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3433nn0red 12440 . . . . 5 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℝ)
3514, 34resubcld 11542 . . . 4 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) ∈ ℝ)
3635, 28remulcld 11139 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ∈ ℝ)
37 chtcl 27044 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
3811, 37syl 17 . . 3 (𝜑 → (θ‘𝑁) ∈ ℝ)
39 1red 11110 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
40 1lt2 12288 . . . . . . . 8 1 < 2
4140a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
4239, 17, 11, 41, 20ltletrd 11270 . . . . . 6 (𝜑 → 1 < 𝑁)
4311, 42rplogcld 26563 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
441, 43rpmulcld 12947 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ+)
4514, 31resubcld 11542 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) ∈ ℝ)
46 ppinncl 27109 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (π𝑁) ∈ ℕ)
4831, 47nndivred 12176 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) ∈ ℝ)
49 chtppilim.4 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
5048, 39, 2, 49ltsub13d 11720 . . . . . . 7 (𝜑𝐴 < (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5131recnd 11137 . . . . . . . . 9 (𝜑 → (𝑁𝑐𝐴) ∈ ℂ)
5247nnrpd 12929 . . . . . . . . . 10 (𝜑 → (π𝑁) ∈ ℝ+)
5352rpcnne0d 12940 . . . . . . . . 9 (𝜑 → ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0))
54 divsubdir 11812 . . . . . . . . 9 (((π𝑁) ∈ ℂ ∧ (𝑁𝑐𝐴) ∈ ℂ ∧ ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0)) → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
5515, 51, 53, 54syl3anc 1373 . . . . . . . 8 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
56 divid 11804 . . . . . . . . . 10 (((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0) → ((π𝑁) / (π𝑁)) = 1)
5753, 56syl 17 . . . . . . . . 9 (𝜑 → ((π𝑁) / (π𝑁)) = 1)
5857oveq1d 7361 . . . . . . . 8 (𝜑 → (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5955, 58eqtrd 2766 . . . . . . 7 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
6050, 59breqtrrd 5119 . . . . . 6 (𝜑𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)))
612, 45, 52ltmuldivd 12978 . . . . . 6 (𝜑 → ((𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)) ↔ 𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁))))
6260, 61mpbird 257 . . . . 5 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)))
63 ppiltx 27112 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ+ → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6430, 63syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6534, 31, 14, 64ltsub2dd 11727 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6627, 45, 35, 62, 65lttrd 11271 . . . 4 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6727, 35, 44, 66ltmul1dd 12986 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
68 fzfid 13877 . . . . . 6 (𝜑 → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin)
69 inss1 4187 . . . . . 6 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))
70 ssfi 9082 . . . . . 6 (((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin ∧ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
7168, 69, 70sylancl 586 . . . . 5 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
72 simpr 484 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ))
7372elin2d 4155 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
74 prmnn 16582 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7574nnrpd 12929 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
7673, 75syl 17 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
7776relogcld 26557 . . . . 5 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
7871, 77fsumrecl 15638 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ∈ ℝ)
7928recnd 11137 . . . . . . 7 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℂ)
80 fsumconst 15694 . . . . . . 7 ((((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin ∧ (𝐴 · (log‘𝑁)) ∈ ℂ) → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
8171, 79, 80syl2anc 584 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
82 ppifl 27095 . . . . . . . . . 10 (𝑁 ∈ ℝ → (π‘(⌊‘𝑁)) = (π𝑁))
8311, 82syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘𝑁)) = (π𝑁))
84 ppifl 27095 . . . . . . . . . 10 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8531, 84syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8683, 85oveq12d 7364 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = ((π𝑁) − (π‘(𝑁𝑐𝐴))))
8739, 11, 42ltled 11258 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
88 chtppilim.2 . . . . . . . . . . . . 13 (𝜑𝐴 < 1)
89 1re 11109 . . . . . . . . . . . . . 14 1 ∈ ℝ
90 ltle 11198 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 → 𝐴 ≤ 1))
912, 89, 90sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 1 → 𝐴 ≤ 1))
9288, 91mpd 15 . . . . . . . . . . . 12 (𝜑𝐴 ≤ 1)
9311, 87, 2, 39, 92cxplead 26655 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐𝐴) ≤ (𝑁𝑐1))
9411recnd 11137 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
9594cxp1d 26640 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐1) = 𝑁)
9693, 95breqtrd 5117 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ 𝑁)
97 flword2 13714 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁𝑐𝐴) ≤ 𝑁) → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
9831, 11, 96, 97syl3anc 1373 . . . . . . . . 9 (𝜑 → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
99 ppidif 27098 . . . . . . . . 9 ((⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))) → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10098, 99syl 17 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10186, 100eqtr3d 2768 . . . . . . 7 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
102101oveq1d 7361 . . . . . 6 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
10381, 102eqtr4d 2769 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
10428adantr 480 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ∈ ℝ)
10531adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ∈ ℝ)
106 reflcl 13697 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (⌊‘(𝑁𝑐𝐴)) ∈ ℝ)
107 peano2re 11283 . . . . . . . . . . 11 ((⌊‘(𝑁𝑐𝐴)) ∈ ℝ → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
10831, 106, 1073syl 18 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
109108adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
11076rpred 12931 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
111 fllep1 13702 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11231, 111syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
113112adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11472elin1d 4154 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)))
115 elfzle1 13424 . . . . . . . . . 10 (𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
116114, 115syl 17 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
117105, 109, 110, 113, 116letrd 11267 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ 𝑝)
11822rpne0d 12936 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
11994, 118, 3cxpefd 26646 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) = (exp‘(𝐴 · (log‘𝑁))))
120119eqcomd 2737 . . . . . . . . 9 (𝜑 → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
121120adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
12276reeflogd 26558 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
123117, 121, 1223brtr4d 5123 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝)))
124 efle 16024 . . . . . . . 8 (((𝐴 · (log‘𝑁)) ∈ ℝ ∧ (log‘𝑝) ∈ ℝ) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
125104, 77, 124syl2anc 584 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
126123, 125mpbird 257 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ≤ (log‘𝑝))
12771, 104, 77, 126fsumle 15703 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
128103, 127eqbrtrrd 5115 . . . 4 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
129 fzfid 13877 . . . . . . 7 (𝜑 → (1...(⌊‘𝑁)) ∈ Fin)
130 inss1 4187 . . . . . . 7 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))
131 ssfi 9082 . . . . . . 7 (((1...(⌊‘𝑁)) ∈ Fin ∧ ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))) → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
132129, 130, 131sylancl 586 . . . . . 6 (𝜑 → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
133 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ))
134133elin2d 4155 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
135 prmuz2 16604 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
136134, 135syl 17 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
137 eluz2b2 12816 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
138136, 137sylib 218 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
139138simpld 494 . . . . . . . . 9 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℕ)
140139nnred 12137 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
141138simprd 495 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 1 < 𝑝)
142140, 141rplogcld 26563 . . . . . . 7 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
143142rpred 12931 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
144142rpge0d 12935 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
14530rpge0d 12935 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑁𝑐𝐴))
146 flge0nn0 13721 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 0 ≤ (𝑁𝑐𝐴)) → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
14731, 145, 146syl2anc 584 . . . . . . . . 9 (𝜑 → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
148 nn0p1nn 12417 . . . . . . . . 9 ((⌊‘(𝑁𝑐𝐴)) ∈ ℕ0 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
149147, 148syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
150 nnuz 12772 . . . . . . . 8 ℕ = (ℤ‘1)
151149, 150eleqtrdi 2841 . . . . . . 7 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1))
152 fzss1 13460 . . . . . . 7 (((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)))
153 ssrin 4192 . . . . . . 7 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
154151, 152, 1533syl 18 . . . . . 6 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
155132, 143, 144, 154fsumless 15700 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
156 chtval 27045 . . . . . . 7 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
15711, 156syl 17 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
158 2eluzge1 12777 . . . . . . . 8 2 ∈ (ℤ‘1)
159 ppisval2 27040 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
16011, 158, 159sylancl 586 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
161160sumeq1d 15604 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
162157, 161eqtrd 2766 . . . . 5 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
163155, 162breqtrrd 5119 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ (θ‘𝑁))
16436, 78, 38, 128, 163letrd 11267 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ (θ‘𝑁))
16529, 36, 38, 67, 164ltletrd 11270 . 2 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (θ‘𝑁))
16626, 165eqbrtrd 5113 1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  cin 3901  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008  +∞cpnf 11140   < clt 11143  cle 11144  cmin 11341   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  cuz 12729  +crp 12887  [,)cico 13244  [,]cicc 13245  ...cfz 13404  cfl 13691  cexp 13965  chash 14234  Σcsu 15590  expce 15965  cprime 16579  logclog 26488  𝑐ccxp 26489  θccht 27026  πcppi 27029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-xnn0 12452  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-dvds 16161  df-prm 16580  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-cxp 26491  df-cht 27032  df-ppi 27035
This theorem is referenced by:  chtppilimlem2  27410
  Copyright terms: Public domain W3C validator