Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem1 Structured version   Visualization version   GIF version

Theorem chtppilimlem1 26170
 Description: Lemma for chtppilim 26172. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
chtppilim.3 (𝜑𝑁 ∈ (2[,)+∞))
chtppilim.4 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
Assertion
Ref Expression
chtppilimlem1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))

Proof of Theorem chtppilimlem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chtppilim.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
21rpred 12485 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 10720 . . . . 5 (𝜑𝐴 ∈ ℂ)
43sqvald 13570 . . . 4 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
54oveq1d 7171 . . 3 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))))
6 chtppilim.3 . . . . . . . . 9 (𝜑𝑁 ∈ (2[,)+∞))
7 2re 11761 . . . . . . . . . 10 2 ∈ ℝ
8 elicopnf 12890 . . . . . . . . . 10 (2 ∈ ℝ → (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁)))
97, 8ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
106, 9sylib 221 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
1110simpld 498 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
12 ppicl 25829 . . . . . . 7 (𝑁 ∈ ℝ → (π𝑁) ∈ ℕ0)
1311, 12syl 17 . . . . . 6 (𝜑 → (π𝑁) ∈ ℕ0)
1413nn0red 12008 . . . . 5 (𝜑 → (π𝑁) ∈ ℝ)
1514recnd 10720 . . . 4 (𝜑 → (π𝑁) ∈ ℂ)
16 0red 10695 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
177a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
18 2pos 11790 . . . . . . . . 9 0 < 2
1918a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
2010simprd 499 . . . . . . . 8 (𝜑 → 2 ≤ 𝑁)
2116, 17, 11, 19, 20ltletrd 10851 . . . . . . 7 (𝜑 → 0 < 𝑁)
2211, 21elrpd 12482 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
2322relogcld 25327 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
2423recnd 10720 . . . 4 (𝜑 → (log‘𝑁) ∈ ℂ)
253, 3, 15, 24mul4d 10903 . . 3 (𝜑 → ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
265, 25eqtrd 2793 . 2 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
272, 14remulcld 10722 . . . 4 (𝜑 → (𝐴 · (π𝑁)) ∈ ℝ)
282, 23remulcld 10722 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ)
2927, 28remulcld 10722 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) ∈ ℝ)
3022, 2rpcxpcld 25436 . . . . . . . 8 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ+)
3130rpred 12485 . . . . . . 7 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ)
32 ppicl 25829 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3331, 32syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3433nn0red 12008 . . . . 5 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℝ)
3514, 34resubcld 11119 . . . 4 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) ∈ ℝ)
3635, 28remulcld 10722 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ∈ ℝ)
37 chtcl 25807 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
3811, 37syl 17 . . 3 (𝜑 → (θ‘𝑁) ∈ ℝ)
39 1red 10693 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
40 1lt2 11858 . . . . . . . 8 1 < 2
4140a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
4239, 17, 11, 41, 20ltletrd 10851 . . . . . 6 (𝜑 → 1 < 𝑁)
4311, 42rplogcld 25333 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
441, 43rpmulcld 12501 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ+)
4514, 31resubcld 11119 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) ∈ ℝ)
46 ppinncl 25872 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (π𝑁) ∈ ℕ)
4831, 47nndivred 11741 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) ∈ ℝ)
49 chtppilim.4 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
5048, 39, 2, 49ltsub13d 11297 . . . . . . 7 (𝜑𝐴 < (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5131recnd 10720 . . . . . . . . 9 (𝜑 → (𝑁𝑐𝐴) ∈ ℂ)
5247nnrpd 12483 . . . . . . . . . 10 (𝜑 → (π𝑁) ∈ ℝ+)
5352rpcnne0d 12494 . . . . . . . . 9 (𝜑 → ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0))
54 divsubdir 11385 . . . . . . . . 9 (((π𝑁) ∈ ℂ ∧ (𝑁𝑐𝐴) ∈ ℂ ∧ ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0)) → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
5515, 51, 53, 54syl3anc 1368 . . . . . . . 8 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
56 divid 11378 . . . . . . . . . 10 (((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0) → ((π𝑁) / (π𝑁)) = 1)
5753, 56syl 17 . . . . . . . . 9 (𝜑 → ((π𝑁) / (π𝑁)) = 1)
5857oveq1d 7171 . . . . . . . 8 (𝜑 → (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5955, 58eqtrd 2793 . . . . . . 7 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
6050, 59breqtrrd 5064 . . . . . 6 (𝜑𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)))
612, 45, 52ltmuldivd 12532 . . . . . 6 (𝜑 → ((𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)) ↔ 𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁))))
6260, 61mpbird 260 . . . . 5 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)))
63 ppiltx 25875 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ+ → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6430, 63syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6534, 31, 14, 64ltsub2dd 11304 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6627, 45, 35, 62, 65lttrd 10852 . . . 4 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6727, 35, 44, 66ltmul1dd 12540 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
68 fzfid 13403 . . . . . 6 (𝜑 → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin)
69 inss1 4135 . . . . . 6 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))
70 ssfi 8755 . . . . . 6 (((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin ∧ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
7168, 69, 70sylancl 589 . . . . 5 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
72 simpr 488 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ))
7372elin2d 4106 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
74 prmnn 16084 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7574nnrpd 12483 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
7673, 75syl 17 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
7776relogcld 25327 . . . . 5 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
7871, 77fsumrecl 15152 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ∈ ℝ)
7928recnd 10720 . . . . . . 7 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℂ)
80 fsumconst 15206 . . . . . . 7 ((((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin ∧ (𝐴 · (log‘𝑁)) ∈ ℂ) → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
8171, 79, 80syl2anc 587 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
82 ppifl 25858 . . . . . . . . . 10 (𝑁 ∈ ℝ → (π‘(⌊‘𝑁)) = (π𝑁))
8311, 82syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘𝑁)) = (π𝑁))
84 ppifl 25858 . . . . . . . . . 10 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8531, 84syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8683, 85oveq12d 7174 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = ((π𝑁) − (π‘(𝑁𝑐𝐴))))
8739, 11, 42ltled 10839 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
88 chtppilim.2 . . . . . . . . . . . . 13 (𝜑𝐴 < 1)
89 1re 10692 . . . . . . . . . . . . . 14 1 ∈ ℝ
90 ltle 10780 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 → 𝐴 ≤ 1))
912, 89, 90sylancl 589 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 1 → 𝐴 ≤ 1))
9288, 91mpd 15 . . . . . . . . . . . 12 (𝜑𝐴 ≤ 1)
9311, 87, 2, 39, 92cxplead 25425 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐𝐴) ≤ (𝑁𝑐1))
9411recnd 10720 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
9594cxp1d 25410 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐1) = 𝑁)
9693, 95breqtrd 5062 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ 𝑁)
97 flword2 13245 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁𝑐𝐴) ≤ 𝑁) → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
9831, 11, 96, 97syl3anc 1368 . . . . . . . . 9 (𝜑 → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
99 ppidif 25861 . . . . . . . . 9 ((⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))) → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10098, 99syl 17 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10186, 100eqtr3d 2795 . . . . . . 7 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
102101oveq1d 7171 . . . . . 6 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
10381, 102eqtr4d 2796 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
10428adantr 484 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ∈ ℝ)
10531adantr 484 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ∈ ℝ)
106 reflcl 13228 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (⌊‘(𝑁𝑐𝐴)) ∈ ℝ)
107 peano2re 10864 . . . . . . . . . . 11 ((⌊‘(𝑁𝑐𝐴)) ∈ ℝ → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
10831, 106, 1073syl 18 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
109108adantr 484 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
11076rpred 12485 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
111 fllep1 13233 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11231, 111syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
113112adantr 484 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11472elin1d 4105 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)))
115 elfzle1 12972 . . . . . . . . . 10 (𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
116114, 115syl 17 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
117105, 109, 110, 113, 116letrd 10848 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ 𝑝)
11822rpne0d 12490 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
11994, 118, 3cxpefd 25416 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) = (exp‘(𝐴 · (log‘𝑁))))
120119eqcomd 2764 . . . . . . . . 9 (𝜑 → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
121120adantr 484 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
12276reeflogd 25328 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
123117, 121, 1223brtr4d 5068 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝)))
124 efle 15532 . . . . . . . 8 (((𝐴 · (log‘𝑁)) ∈ ℝ ∧ (log‘𝑝) ∈ ℝ) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
125104, 77, 124syl2anc 587 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
126123, 125mpbird 260 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ≤ (log‘𝑝))
12771, 104, 77, 126fsumle 15215 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
128103, 127eqbrtrrd 5060 . . . 4 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
129 fzfid 13403 . . . . . . 7 (𝜑 → (1...(⌊‘𝑁)) ∈ Fin)
130 inss1 4135 . . . . . . 7 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))
131 ssfi 8755 . . . . . . 7 (((1...(⌊‘𝑁)) ∈ Fin ∧ ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))) → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
132129, 130, 131sylancl 589 . . . . . 6 (𝜑 → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
133 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ))
134133elin2d 4106 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
135 prmuz2 16106 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
136134, 135syl 17 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
137 eluz2b2 12374 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
138136, 137sylib 221 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
139138simpld 498 . . . . . . . . 9 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℕ)
140139nnred 11702 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
141138simprd 499 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 1 < 𝑝)
142140, 141rplogcld 25333 . . . . . . 7 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
143142rpred 12485 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
144142rpge0d 12489 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
14530rpge0d 12489 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑁𝑐𝐴))
146 flge0nn0 13252 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 0 ≤ (𝑁𝑐𝐴)) → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
14731, 145, 146syl2anc 587 . . . . . . . . 9 (𝜑 → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
148 nn0p1nn 11986 . . . . . . . . 9 ((⌊‘(𝑁𝑐𝐴)) ∈ ℕ0 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
149147, 148syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
150 nnuz 12334 . . . . . . . 8 ℕ = (ℤ‘1)
151149, 150eleqtrdi 2862 . . . . . . 7 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1))
152 fzss1 13008 . . . . . . 7 (((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)))
153 ssrin 4140 . . . . . . 7 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
154151, 152, 1533syl 18 . . . . . 6 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
155132, 143, 144, 154fsumless 15212 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
156 chtval 25808 . . . . . . 7 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
15711, 156syl 17 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
158 2eluzge1 12347 . . . . . . . 8 2 ∈ (ℤ‘1)
159 ppisval2 25803 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
16011, 158, 159sylancl 589 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
161160sumeq1d 15119 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
162157, 161eqtrd 2793 . . . . 5 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
163155, 162breqtrrd 5064 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ (θ‘𝑁))
16436, 78, 38, 128, 163letrd 10848 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ (θ‘𝑁))
16529, 36, 38, 67, 164ltletrd 10851 . 2 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (θ‘𝑁))
16626, 165eqbrtrd 5058 1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2951   ∩ cin 3859   ⊆ wss 3860   class class class wbr 5036  ‘cfv 6340  (class class class)co 7156  Fincfn 8540  ℂcc 10586  ℝcr 10587  0cc0 10588  1c1 10589   + caddc 10591   · cmul 10593  +∞cpnf 10723   < clt 10726   ≤ cle 10727   − cmin 10921   / cdiv 11348  ℕcn 11687  2c2 11742  ℕ0cn0 11947  ℤ≥cuz 12295  ℝ+crp 12443  [,)cico 12794  [,]cicc 12795  ...cfz 12952  ⌊cfl 13222  ↑cexp 13492  ♯chash 13753  Σcsu 15103  expce 15476  ℙcprime 16081  logclog 25259  ↑𝑐ccxp 25260  θccht 25789  πcppi 25792 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-inf2 9150  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-pre-sup 10666  ax-addf 10667  ax-mulf 10668 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-oadd 8122  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-fi 8921  df-sup 8952  df-inf 8953  df-oi 9020  df-dju 9376  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-q 12402  df-rp 12444  df-xneg 12561  df-xadd 12562  df-xmul 12563  df-ioo 12796  df-ioc 12797  df-ico 12798  df-icc 12799  df-fz 12953  df-fzo 13096  df-fl 13224  df-mod 13300  df-seq 13432  df-exp 13493  df-fac 13697  df-bc 13726  df-hash 13754  df-shft 14487  df-cj 14519  df-re 14520  df-im 14521  df-sqrt 14655  df-abs 14656  df-limsup 14889  df-clim 14906  df-rlim 14907  df-sum 15104  df-ef 15482  df-sin 15484  df-cos 15485  df-pi 15487  df-dvds 15669  df-prm 16082  df-struct 16557  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-ress 16563  df-plusg 16650  df-mulr 16651  df-starv 16652  df-sca 16653  df-vsca 16654  df-ip 16655  df-tset 16656  df-ple 16657  df-ds 16659  df-unif 16660  df-hom 16661  df-cco 16662  df-rest 16768  df-topn 16769  df-0g 16787  df-gsum 16788  df-topgen 16789  df-pt 16790  df-prds 16793  df-xrs 16847  df-qtop 16852  df-imas 16853  df-xps 16855  df-mre 16929  df-mrc 16930  df-acs 16932  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-submnd 18037  df-mulg 18306  df-cntz 18528  df-cmn 18989  df-psmet 20172  df-xmet 20173  df-met 20174  df-bl 20175  df-mopn 20176  df-fbas 20177  df-fg 20178  df-cnfld 20181  df-top 21608  df-topon 21625  df-topsp 21647  df-bases 21660  df-cld 21733  df-ntr 21734  df-cls 21735  df-nei 21812  df-lp 21850  df-perf 21851  df-cn 21941  df-cnp 21942  df-haus 22029  df-tx 22276  df-hmeo 22469  df-fil 22560  df-fm 22652  df-flim 22653  df-flf 22654  df-xms 23036  df-ms 23037  df-tms 23038  df-cncf 23593  df-limc 24579  df-dv 24580  df-log 25261  df-cxp 25262  df-cht 25795  df-ppi 25798 This theorem is referenced by:  chtppilimlem2  26171
 Copyright terms: Public domain W3C validator