MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtppilimlem1 Structured version   Visualization version   GIF version

Theorem chtppilimlem1 26526
Description: Lemma for chtppilim 26528. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypotheses
Ref Expression
chtppilim.1 (𝜑𝐴 ∈ ℝ+)
chtppilim.2 (𝜑𝐴 < 1)
chtppilim.3 (𝜑𝑁 ∈ (2[,)+∞))
chtppilim.4 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
Assertion
Ref Expression
chtppilimlem1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))

Proof of Theorem chtppilimlem1
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 chtppilim.1 . . . . . . 7 (𝜑𝐴 ∈ ℝ+)
21rpred 12701 . . . . . 6 (𝜑𝐴 ∈ ℝ)
32recnd 10934 . . . . 5 (𝜑𝐴 ∈ ℂ)
43sqvald 13789 . . . 4 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
54oveq1d 7270 . . 3 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))))
6 chtppilim.3 . . . . . . . . 9 (𝜑𝑁 ∈ (2[,)+∞))
7 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
8 elicopnf 13106 . . . . . . . . . 10 (2 ∈ ℝ → (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁)))
97, 8ax-mp 5 . . . . . . . . 9 (𝑁 ∈ (2[,)+∞) ↔ (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
106, 9sylib 217 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 2 ≤ 𝑁))
1110simpld 494 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
12 ppicl 26185 . . . . . . 7 (𝑁 ∈ ℝ → (π𝑁) ∈ ℕ0)
1311, 12syl 17 . . . . . 6 (𝜑 → (π𝑁) ∈ ℕ0)
1413nn0red 12224 . . . . 5 (𝜑 → (π𝑁) ∈ ℝ)
1514recnd 10934 . . . 4 (𝜑 → (π𝑁) ∈ ℂ)
16 0red 10909 . . . . . . . 8 (𝜑 → 0 ∈ ℝ)
177a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℝ)
18 2pos 12006 . . . . . . . . 9 0 < 2
1918a1i 11 . . . . . . . 8 (𝜑 → 0 < 2)
2010simprd 495 . . . . . . . 8 (𝜑 → 2 ≤ 𝑁)
2116, 17, 11, 19, 20ltletrd 11065 . . . . . . 7 (𝜑 → 0 < 𝑁)
2211, 21elrpd 12698 . . . . . 6 (𝜑𝑁 ∈ ℝ+)
2322relogcld 25683 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ)
2423recnd 10934 . . . 4 (𝜑 → (log‘𝑁) ∈ ℂ)
253, 3, 15, 24mul4d 11117 . . 3 (𝜑 → ((𝐴 · 𝐴) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
265, 25eqtrd 2778 . 2 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) = ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))))
272, 14remulcld 10936 . . . 4 (𝜑 → (𝐴 · (π𝑁)) ∈ ℝ)
282, 23remulcld 10936 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ)
2927, 28remulcld 10936 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) ∈ ℝ)
3022, 2rpcxpcld 25792 . . . . . . . 8 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ+)
3130rpred 12701 . . . . . . 7 (𝜑 → (𝑁𝑐𝐴) ∈ ℝ)
32 ppicl 26185 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3331, 32syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℕ0)
3433nn0red 12224 . . . . 5 (𝜑 → (π‘(𝑁𝑐𝐴)) ∈ ℝ)
3514, 34resubcld 11333 . . . 4 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) ∈ ℝ)
3635, 28remulcld 10936 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ∈ ℝ)
37 chtcl 26163 . . . 4 (𝑁 ∈ ℝ → (θ‘𝑁) ∈ ℝ)
3811, 37syl 17 . . 3 (𝜑 → (θ‘𝑁) ∈ ℝ)
39 1red 10907 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
40 1lt2 12074 . . . . . . . 8 1 < 2
4140a1i 11 . . . . . . 7 (𝜑 → 1 < 2)
4239, 17, 11, 41, 20ltletrd 11065 . . . . . 6 (𝜑 → 1 < 𝑁)
4311, 42rplogcld 25689 . . . . 5 (𝜑 → (log‘𝑁) ∈ ℝ+)
441, 43rpmulcld 12717 . . . 4 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℝ+)
4514, 31resubcld 11333 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) ∈ ℝ)
46 ppinncl 26228 . . . . . . . . . 10 ((𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → (π𝑁) ∈ ℕ)
4710, 46syl 17 . . . . . . . . 9 (𝜑 → (π𝑁) ∈ ℕ)
4831, 47nndivred 11957 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) ∈ ℝ)
49 chtppilim.4 . . . . . . . 8 (𝜑 → ((𝑁𝑐𝐴) / (π𝑁)) < (1 − 𝐴))
5048, 39, 2, 49ltsub13d 11511 . . . . . . 7 (𝜑𝐴 < (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5131recnd 10934 . . . . . . . . 9 (𝜑 → (𝑁𝑐𝐴) ∈ ℂ)
5247nnrpd 12699 . . . . . . . . . 10 (𝜑 → (π𝑁) ∈ ℝ+)
5352rpcnne0d 12710 . . . . . . . . 9 (𝜑 → ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0))
54 divsubdir 11599 . . . . . . . . 9 (((π𝑁) ∈ ℂ ∧ (𝑁𝑐𝐴) ∈ ℂ ∧ ((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0)) → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
5515, 51, 53, 54syl3anc 1369 . . . . . . . 8 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))))
56 divid 11592 . . . . . . . . . 10 (((π𝑁) ∈ ℂ ∧ (π𝑁) ≠ 0) → ((π𝑁) / (π𝑁)) = 1)
5753, 56syl 17 . . . . . . . . 9 (𝜑 → ((π𝑁) / (π𝑁)) = 1)
5857oveq1d 7270 . . . . . . . 8 (𝜑 → (((π𝑁) / (π𝑁)) − ((𝑁𝑐𝐴) / (π𝑁))) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
5955, 58eqtrd 2778 . . . . . . 7 (𝜑 → (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)) = (1 − ((𝑁𝑐𝐴) / (π𝑁))))
6050, 59breqtrrd 5098 . . . . . 6 (𝜑𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁)))
612, 45, 52ltmuldivd 12748 . . . . . 6 (𝜑 → ((𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)) ↔ 𝐴 < (((π𝑁) − (𝑁𝑐𝐴)) / (π𝑁))))
6260, 61mpbird 256 . . . . 5 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (𝑁𝑐𝐴)))
63 ppiltx 26231 . . . . . . 7 ((𝑁𝑐𝐴) ∈ ℝ+ → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6430, 63syl 17 . . . . . 6 (𝜑 → (π‘(𝑁𝑐𝐴)) < (𝑁𝑐𝐴))
6534, 31, 14, 64ltsub2dd 11518 . . . . 5 (𝜑 → ((π𝑁) − (𝑁𝑐𝐴)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6627, 45, 35, 62, 65lttrd 11066 . . . 4 (𝜑 → (𝐴 · (π𝑁)) < ((π𝑁) − (π‘(𝑁𝑐𝐴))))
6727, 35, 44, 66ltmul1dd 12756 . . 3 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
68 fzfid 13621 . . . . . 6 (𝜑 → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin)
69 inss1 4159 . . . . . 6 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))
70 ssfi 8918 . . . . . 6 (((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∈ Fin ∧ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁))) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
7168, 69, 70sylancl 585 . . . . 5 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
72 simpr 484 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ))
7372elin2d 4129 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
74 prmnn 16307 . . . . . . . 8 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
7574nnrpd 12699 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℝ+)
7673, 75syl 17 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ+)
7776relogcld 25683 . . . . 5 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
7871, 77fsumrecl 15374 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ∈ ℝ)
7928recnd 10934 . . . . . . 7 (𝜑 → (𝐴 · (log‘𝑁)) ∈ ℂ)
80 fsumconst 15430 . . . . . . 7 ((((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ∈ Fin ∧ (𝐴 · (log‘𝑁)) ∈ ℂ) → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
8171, 79, 80syl2anc 583 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
82 ppifl 26214 . . . . . . . . . 10 (𝑁 ∈ ℝ → (π‘(⌊‘𝑁)) = (π𝑁))
8311, 82syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘𝑁)) = (π𝑁))
84 ppifl 26214 . . . . . . . . . 10 ((𝑁𝑐𝐴) ∈ ℝ → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8531, 84syl 17 . . . . . . . . 9 (𝜑 → (π‘(⌊‘(𝑁𝑐𝐴))) = (π‘(𝑁𝑐𝐴)))
8683, 85oveq12d 7273 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = ((π𝑁) − (π‘(𝑁𝑐𝐴))))
8739, 11, 42ltled 11053 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 𝑁)
88 chtppilim.2 . . . . . . . . . . . . 13 (𝜑𝐴 < 1)
89 1re 10906 . . . . . . . . . . . . . 14 1 ∈ ℝ
90 ltle 10994 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐴 < 1 → 𝐴 ≤ 1))
912, 89, 90sylancl 585 . . . . . . . . . . . . 13 (𝜑 → (𝐴 < 1 → 𝐴 ≤ 1))
9288, 91mpd 15 . . . . . . . . . . . 12 (𝜑𝐴 ≤ 1)
9311, 87, 2, 39, 92cxplead 25781 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐𝐴) ≤ (𝑁𝑐1))
9411recnd 10934 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℂ)
9594cxp1d 25766 . . . . . . . . . . 11 (𝜑 → (𝑁𝑐1) = 𝑁)
9693, 95breqtrd 5096 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ 𝑁)
97 flword2 13461 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝑁𝑐𝐴) ≤ 𝑁) → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
9831, 11, 96, 97syl3anc 1369 . . . . . . . . 9 (𝜑 → (⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))))
99 ppidif 26217 . . . . . . . . 9 ((⌊‘𝑁) ∈ (ℤ‘(⌊‘(𝑁𝑐𝐴))) → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10098, 99syl 17 . . . . . . . 8 (𝜑 → ((π‘(⌊‘𝑁)) − (π‘(⌊‘(𝑁𝑐𝐴)))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
10186, 100eqtr3d 2780 . . . . . . 7 (𝜑 → ((π𝑁) − (π‘(𝑁𝑐𝐴))) = (♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)))
102101oveq1d 7270 . . . . . 6 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) = ((♯‘((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) · (𝐴 · (log‘𝑁))))
10381, 102eqtr4d 2781 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) = (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))))
10428adantr 480 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ∈ ℝ)
10531adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ∈ ℝ)
106 reflcl 13444 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (⌊‘(𝑁𝑐𝐴)) ∈ ℝ)
107 peano2re 11078 . . . . . . . . . . 11 ((⌊‘(𝑁𝑐𝐴)) ∈ ℝ → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
10831, 106, 1073syl 18 . . . . . . . . . 10 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
109108adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℝ)
11076rpred 12701 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
111 fllep1 13449 . . . . . . . . . . 11 ((𝑁𝑐𝐴) ∈ ℝ → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11231, 111syl 17 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
113112adantr 480 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ ((⌊‘(𝑁𝑐𝐴)) + 1))
11472elin1d 4128 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)))
115 elfzle1 13188 . . . . . . . . . 10 (𝑝 ∈ (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
116114, 115syl 17 . . . . . . . . 9 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((⌊‘(𝑁𝑐𝐴)) + 1) ≤ 𝑝)
117105, 109, 110, 113, 116letrd 11062 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝑁𝑐𝐴) ≤ 𝑝)
11822rpne0d 12706 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
11994, 118, 3cxpefd 25772 . . . . . . . . . 10 (𝜑 → (𝑁𝑐𝐴) = (exp‘(𝐴 · (log‘𝑁))))
120119eqcomd 2744 . . . . . . . . 9 (𝜑 → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
121120adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) = (𝑁𝑐𝐴))
12276reeflogd 25684 . . . . . . . 8 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(log‘𝑝)) = 𝑝)
123117, 121, 1223brtr4d 5102 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝)))
124 efle 15755 . . . . . . . 8 (((𝐴 · (log‘𝑁)) ∈ ℝ ∧ (log‘𝑝) ∈ ℝ) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
125104, 77, 124syl2anc 583 . . . . . . 7 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → ((𝐴 · (log‘𝑁)) ≤ (log‘𝑝) ↔ (exp‘(𝐴 · (log‘𝑁))) ≤ (exp‘(log‘𝑝))))
126123, 125mpbird 256 . . . . . 6 ((𝜑𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)) → (𝐴 · (log‘𝑁)) ≤ (log‘𝑝))
12771, 104, 77, 126fsumle 15439 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(𝐴 · (log‘𝑁)) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
128103, 127eqbrtrrd 5094 . . . 4 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
129 fzfid 13621 . . . . . . 7 (𝜑 → (1...(⌊‘𝑁)) ∈ Fin)
130 inss1 4159 . . . . . . 7 ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))
131 ssfi 8918 . . . . . . 7 (((1...(⌊‘𝑁)) ∈ Fin ∧ ((1...(⌊‘𝑁)) ∩ ℙ) ⊆ (1...(⌊‘𝑁))) → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
132129, 130, 131sylancl 585 . . . . . 6 (𝜑 → ((1...(⌊‘𝑁)) ∩ ℙ) ∈ Fin)
133 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ))
134133elin2d 4129 . . . . . . . . . . . 12 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℙ)
135 prmuz2 16329 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ (ℤ‘2))
136134, 135syl 17 . . . . . . . . . . 11 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ (ℤ‘2))
137 eluz2b2 12590 . . . . . . . . . . 11 (𝑝 ∈ (ℤ‘2) ↔ (𝑝 ∈ ℕ ∧ 1 < 𝑝))
138136, 137sylib 217 . . . . . . . . . 10 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (𝑝 ∈ ℕ ∧ 1 < 𝑝))
139138simpld 494 . . . . . . . . 9 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℕ)
140139nnred 11918 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 𝑝 ∈ ℝ)
141138simprd 495 . . . . . . . 8 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 1 < 𝑝)
142140, 141rplogcld 25689 . . . . . . 7 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ+)
143142rpred 12701 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → (log‘𝑝) ∈ ℝ)
144142rpge0d 12705 . . . . . 6 ((𝜑𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)) → 0 ≤ (log‘𝑝))
14530rpge0d 12705 . . . . . . . . . 10 (𝜑 → 0 ≤ (𝑁𝑐𝐴))
146 flge0nn0 13468 . . . . . . . . . 10 (((𝑁𝑐𝐴) ∈ ℝ ∧ 0 ≤ (𝑁𝑐𝐴)) → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
14731, 145, 146syl2anc 583 . . . . . . . . 9 (𝜑 → (⌊‘(𝑁𝑐𝐴)) ∈ ℕ0)
148 nn0p1nn 12202 . . . . . . . . 9 ((⌊‘(𝑁𝑐𝐴)) ∈ ℕ0 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
149147, 148syl 17 . . . . . . . 8 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ ℕ)
150 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
151149, 150eleqtrdi 2849 . . . . . . 7 (𝜑 → ((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1))
152 fzss1 13224 . . . . . . 7 (((⌊‘(𝑁𝑐𝐴)) + 1) ∈ (ℤ‘1) → (((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)))
153 ssrin 4164 . . . . . . 7 ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ⊆ (1...(⌊‘𝑁)) → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
154151, 152, 1533syl 18 . . . . . 6 (𝜑 → ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ) ⊆ ((1...(⌊‘𝑁)) ∩ ℙ))
155132, 143, 144, 154fsumless 15436 . . . . 5 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
156 chtval 26164 . . . . . . 7 (𝑁 ∈ ℝ → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
15711, 156syl 17 . . . . . 6 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝))
158 2eluzge1 12563 . . . . . . . 8 2 ∈ (ℤ‘1)
159 ppisval2 26159 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
16011, 158, 159sylancl 585 . . . . . . 7 (𝜑 → ((0[,]𝑁) ∩ ℙ) = ((1...(⌊‘𝑁)) ∩ ℙ))
161160sumeq1d 15341 . . . . . 6 (𝜑 → Σ𝑝 ∈ ((0[,]𝑁) ∩ ℙ)(log‘𝑝) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
162157, 161eqtrd 2778 . . . . 5 (𝜑 → (θ‘𝑁) = Σ𝑝 ∈ ((1...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝))
163155, 162breqtrrd 5098 . . . 4 (𝜑 → Σ𝑝 ∈ ((((⌊‘(𝑁𝑐𝐴)) + 1)...(⌊‘𝑁)) ∩ ℙ)(log‘𝑝) ≤ (θ‘𝑁))
16436, 78, 38, 128, 163letrd 11062 . . 3 (𝜑 → (((π𝑁) − (π‘(𝑁𝑐𝐴))) · (𝐴 · (log‘𝑁))) ≤ (θ‘𝑁))
16529, 36, 38, 67, 164ltletrd 11065 . 2 (𝜑 → ((𝐴 · (π𝑁)) · (𝐴 · (log‘𝑁))) < (θ‘𝑁))
16626, 165eqbrtrd 5092 1 (𝜑 → ((𝐴↑2) · ((π𝑁) · (log‘𝑁))) < (θ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883   class class class wbr 5070  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cuz 12511  +crp 12659  [,)cico 13010  [,]cicc 13011  ...cfz 13168  cfl 13438  cexp 13710  chash 13972  Σcsu 15325  expce 15699  cprime 16304  logclog 25615  𝑐ccxp 25616  θccht 26145  πcppi 26148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-dvds 15892  df-prm 16305  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-cht 26151  df-ppi 26154
This theorem is referenced by:  chtppilimlem2  26527
  Copyright terms: Public domain W3C validator