Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Visualization version   GIF version

Theorem cevathlem1 44055
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevathlem1.b (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
cevathlem1.c (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
cevathlem1.d (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
cevathlem1.e (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
Assertion
Ref Expression
cevathlem1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1145 . . . 4 (𝜑𝐵 ∈ ℂ)
3 cevathlem1.b . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
43simp3d 1146 . . . 4 (𝜑𝐹 ∈ ℂ)
52, 4mulcld 10853 . . 3 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
6 cevathlem1.c . . . 4 (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
76simp2d 1145 . . 3 (𝜑𝐻 ∈ ℂ)
85, 7mulcld 10853 . 2 (𝜑 → ((𝐵 · 𝐹) · 𝐻) ∈ ℂ)
93simp1d 1144 . . . 4 (𝜑𝐷 ∈ ℂ)
106simp1d 1144 . . . 4 (𝜑𝐺 ∈ ℂ)
119, 10mulcld 10853 . . 3 (𝜑 → (𝐷 · 𝐺) ∈ ℂ)
126simp3d 1146 . . 3 (𝜑𝐾 ∈ ℂ)
1311, 12mulcld 10853 . 2 (𝜑 → ((𝐷 · 𝐺) · 𝐾) ∈ ℂ)
141simp1d 1144 . . . 4 (𝜑𝐴 ∈ ℂ)
153simp2d 1145 . . . 4 (𝜑𝐸 ∈ ℂ)
1614, 15mulcld 10853 . . 3 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
171simp3d 1146 . . 3 (𝜑𝐶 ∈ ℂ)
1816, 17mulcld 10853 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ∈ ℂ)
19 cevathlem1.d . . . . 5 (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
2019simp1d 1144 . . . 4 (𝜑𝐴 ≠ 0)
2119simp2d 1145 . . . 4 (𝜑𝐸 ≠ 0)
2214, 15, 20, 21mulne0d 11484 . . 3 (𝜑 → (𝐴 · 𝐸) ≠ 0)
2319simp3d 1146 . . 3 (𝜑𝐶 ≠ 0)
2416, 17, 22, 23mulne0d 11484 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ≠ 0)
25 cevathlem1.e . . . . . . . 8 (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
2625simp1d 1144 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐶 · 𝐷))
2725simp2d 1145 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐴 · 𝐺))
2826, 27oveq12d 7231 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐶 · 𝐷) · (𝐴 · 𝐺)))
2914, 2, 15, 4mul4d 11044 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐴 · 𝐸) · (𝐵 · 𝐹)))
3017, 9, 14, 10mul4d 11044 . . . . . 6 (𝜑 → ((𝐶 · 𝐷) · (𝐴 · 𝐺)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3128, 29, 303eqtr3d 2785 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · (𝐵 · 𝐹)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3225simp3d 1146 . . . . 5 (𝜑 → (𝐶 · 𝐻) = (𝐸 · 𝐾))
3331, 32oveq12d 7231 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)))
3416, 5, 17, 7mul4d 11044 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)))
3517, 14mulcld 10853 . . . . 5 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
3635, 11, 15, 12mul4d 11044 . . . 4 (𝜑 → (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3733, 34, 363eqtr3d 2785 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3814, 15, 17mul32d 11042 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐴 · 𝐶) · 𝐸))
3914, 17mulcomd 10854 . . . . . 6 (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴))
4039oveq1d 7228 . . . . 5 (𝜑 → ((𝐴 · 𝐶) · 𝐸) = ((𝐶 · 𝐴) · 𝐸))
4138, 40eqtrd 2777 . . . 4 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐶 · 𝐴) · 𝐸))
4241oveq1d 7228 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
4337, 42eqtr4d 2780 . 2 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)))
448, 13, 18, 24, 43mulcanad 11467 1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2110  wne 2940  (class class class)co 7213  cc 10727  0cc0 10729   · cmul 10734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065
This theorem is referenced by:  cevath  44057
  Copyright terms: Public domain W3C validator