Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Visualization version   GIF version

Theorem cevathlem1 44383
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevathlem1.b (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
cevathlem1.c (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
cevathlem1.d (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
cevathlem1.e (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
Assertion
Ref Expression
cevathlem1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1142 . . . 4 (𝜑𝐵 ∈ ℂ)
3 cevathlem1.b . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
43simp3d 1143 . . . 4 (𝜑𝐹 ∈ ℂ)
52, 4mulcld 10995 . . 3 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
6 cevathlem1.c . . . 4 (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
76simp2d 1142 . . 3 (𝜑𝐻 ∈ ℂ)
85, 7mulcld 10995 . 2 (𝜑 → ((𝐵 · 𝐹) · 𝐻) ∈ ℂ)
93simp1d 1141 . . . 4 (𝜑𝐷 ∈ ℂ)
106simp1d 1141 . . . 4 (𝜑𝐺 ∈ ℂ)
119, 10mulcld 10995 . . 3 (𝜑 → (𝐷 · 𝐺) ∈ ℂ)
126simp3d 1143 . . 3 (𝜑𝐾 ∈ ℂ)
1311, 12mulcld 10995 . 2 (𝜑 → ((𝐷 · 𝐺) · 𝐾) ∈ ℂ)
141simp1d 1141 . . . 4 (𝜑𝐴 ∈ ℂ)
153simp2d 1142 . . . 4 (𝜑𝐸 ∈ ℂ)
1614, 15mulcld 10995 . . 3 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
171simp3d 1143 . . 3 (𝜑𝐶 ∈ ℂ)
1816, 17mulcld 10995 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ∈ ℂ)
19 cevathlem1.d . . . . 5 (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
2019simp1d 1141 . . . 4 (𝜑𝐴 ≠ 0)
2119simp2d 1142 . . . 4 (𝜑𝐸 ≠ 0)
2214, 15, 20, 21mulne0d 11627 . . 3 (𝜑 → (𝐴 · 𝐸) ≠ 0)
2319simp3d 1143 . . 3 (𝜑𝐶 ≠ 0)
2416, 17, 22, 23mulne0d 11627 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ≠ 0)
25 cevathlem1.e . . . . . . . 8 (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
2625simp1d 1141 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐶 · 𝐷))
2725simp2d 1142 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐴 · 𝐺))
2826, 27oveq12d 7293 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐶 · 𝐷) · (𝐴 · 𝐺)))
2914, 2, 15, 4mul4d 11187 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐴 · 𝐸) · (𝐵 · 𝐹)))
3017, 9, 14, 10mul4d 11187 . . . . . 6 (𝜑 → ((𝐶 · 𝐷) · (𝐴 · 𝐺)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3128, 29, 303eqtr3d 2786 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · (𝐵 · 𝐹)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3225simp3d 1143 . . . . 5 (𝜑 → (𝐶 · 𝐻) = (𝐸 · 𝐾))
3331, 32oveq12d 7293 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)))
3416, 5, 17, 7mul4d 11187 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)))
3517, 14mulcld 10995 . . . . 5 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
3635, 11, 15, 12mul4d 11187 . . . 4 (𝜑 → (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3733, 34, 363eqtr3d 2786 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3814, 15, 17mul32d 11185 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐴 · 𝐶) · 𝐸))
3914, 17mulcomd 10996 . . . . . 6 (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴))
4039oveq1d 7290 . . . . 5 (𝜑 → ((𝐴 · 𝐶) · 𝐸) = ((𝐶 · 𝐴) · 𝐸))
4138, 40eqtrd 2778 . . . 4 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐶 · 𝐴) · 𝐸))
4241oveq1d 7290 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
4337, 42eqtr4d 2781 . 2 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)))
448, 13, 18, 24, 43mulcanad 11610 1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wne 2943  (class class class)co 7275  cc 10869  0cc0 10871   · cmul 10876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  cevath  44385
  Copyright terms: Public domain W3C validator