Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cevathlem1 Structured version   Visualization version   GIF version

Theorem cevathlem1 46865
Description: Ceva's theorem first lemma. Multiplies three identities and divides by the common factors. (Contributed by Saveliy Skresanov, 24-Sep-2017.)
Hypotheses
Ref Expression
cevathlem1.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
cevathlem1.b (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
cevathlem1.c (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
cevathlem1.d (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
cevathlem1.e (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
Assertion
Ref Expression
cevathlem1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))

Proof of Theorem cevathlem1
StepHypRef Expression
1 cevathlem1.a . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
21simp2d 1143 . . . 4 (𝜑𝐵 ∈ ℂ)
3 cevathlem1.b . . . . 5 (𝜑 → (𝐷 ∈ ℂ ∧ 𝐸 ∈ ℂ ∧ 𝐹 ∈ ℂ))
43simp3d 1144 . . . 4 (𝜑𝐹 ∈ ℂ)
52, 4mulcld 11194 . . 3 (𝜑 → (𝐵 · 𝐹) ∈ ℂ)
6 cevathlem1.c . . . 4 (𝜑 → (𝐺 ∈ ℂ ∧ 𝐻 ∈ ℂ ∧ 𝐾 ∈ ℂ))
76simp2d 1143 . . 3 (𝜑𝐻 ∈ ℂ)
85, 7mulcld 11194 . 2 (𝜑 → ((𝐵 · 𝐹) · 𝐻) ∈ ℂ)
93simp1d 1142 . . . 4 (𝜑𝐷 ∈ ℂ)
106simp1d 1142 . . . 4 (𝜑𝐺 ∈ ℂ)
119, 10mulcld 11194 . . 3 (𝜑 → (𝐷 · 𝐺) ∈ ℂ)
126simp3d 1144 . . 3 (𝜑𝐾 ∈ ℂ)
1311, 12mulcld 11194 . 2 (𝜑 → ((𝐷 · 𝐺) · 𝐾) ∈ ℂ)
141simp1d 1142 . . . 4 (𝜑𝐴 ∈ ℂ)
153simp2d 1143 . . . 4 (𝜑𝐸 ∈ ℂ)
1614, 15mulcld 11194 . . 3 (𝜑 → (𝐴 · 𝐸) ∈ ℂ)
171simp3d 1144 . . 3 (𝜑𝐶 ∈ ℂ)
1816, 17mulcld 11194 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ∈ ℂ)
19 cevathlem1.d . . . . 5 (𝜑 → (𝐴 ≠ 0 ∧ 𝐸 ≠ 0 ∧ 𝐶 ≠ 0))
2019simp1d 1142 . . . 4 (𝜑𝐴 ≠ 0)
2119simp2d 1143 . . . 4 (𝜑𝐸 ≠ 0)
2214, 15, 20, 21mulne0d 11830 . . 3 (𝜑 → (𝐴 · 𝐸) ≠ 0)
2319simp3d 1144 . . 3 (𝜑𝐶 ≠ 0)
2416, 17, 22, 23mulne0d 11830 . 2 (𝜑 → ((𝐴 · 𝐸) · 𝐶) ≠ 0)
25 cevathlem1.e . . . . . . . 8 (𝜑 → ((𝐴 · 𝐵) = (𝐶 · 𝐷) ∧ (𝐸 · 𝐹) = (𝐴 · 𝐺) ∧ (𝐶 · 𝐻) = (𝐸 · 𝐾)))
2625simp1d 1142 . . . . . . 7 (𝜑 → (𝐴 · 𝐵) = (𝐶 · 𝐷))
2725simp2d 1143 . . . . . . 7 (𝜑 → (𝐸 · 𝐹) = (𝐴 · 𝐺))
2826, 27oveq12d 7405 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐶 · 𝐷) · (𝐴 · 𝐺)))
2914, 2, 15, 4mul4d 11386 . . . . . 6 (𝜑 → ((𝐴 · 𝐵) · (𝐸 · 𝐹)) = ((𝐴 · 𝐸) · (𝐵 · 𝐹)))
3017, 9, 14, 10mul4d 11386 . . . . . 6 (𝜑 → ((𝐶 · 𝐷) · (𝐴 · 𝐺)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3128, 29, 303eqtr3d 2772 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · (𝐵 · 𝐹)) = ((𝐶 · 𝐴) · (𝐷 · 𝐺)))
3225simp3d 1144 . . . . 5 (𝜑 → (𝐶 · 𝐻) = (𝐸 · 𝐾))
3331, 32oveq12d 7405 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)))
3416, 5, 17, 7mul4d 11386 . . . 4 (𝜑 → (((𝐴 · 𝐸) · (𝐵 · 𝐹)) · (𝐶 · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)))
3517, 14mulcld 11194 . . . . 5 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
3635, 11, 15, 12mul4d 11386 . . . 4 (𝜑 → (((𝐶 · 𝐴) · (𝐷 · 𝐺)) · (𝐸 · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3733, 34, 363eqtr3d 2772 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
3814, 15, 17mul32d 11384 . . . . 5 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐴 · 𝐶) · 𝐸))
3914, 17mulcomd 11195 . . . . . 6 (𝜑 → (𝐴 · 𝐶) = (𝐶 · 𝐴))
4039oveq1d 7402 . . . . 5 (𝜑 → ((𝐴 · 𝐶) · 𝐸) = ((𝐶 · 𝐴) · 𝐸))
4138, 40eqtrd 2764 . . . 4 (𝜑 → ((𝐴 · 𝐸) · 𝐶) = ((𝐶 · 𝐴) · 𝐸))
4241oveq1d 7402 . . 3 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)) = (((𝐶 · 𝐴) · 𝐸) · ((𝐷 · 𝐺) · 𝐾)))
4337, 42eqtr4d 2767 . 2 (𝜑 → (((𝐴 · 𝐸) · 𝐶) · ((𝐵 · 𝐹) · 𝐻)) = (((𝐴 · 𝐸) · 𝐶) · ((𝐷 · 𝐺) · 𝐾)))
448, 13, 18, 24, 43mulcanad 11813 1 (𝜑 → ((𝐵 · 𝐹) · 𝐻) = ((𝐷 · 𝐺) · 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cc 11066  0cc0 11068   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  cevath  46867
  Copyright terms: Public domain W3C validator