Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Structured version   Visualization version   GIF version

Theorem circum 33632
Description: The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1 𝐴 = ((2 · π) / 𝑛)
circum.2 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
circum.3 𝑅 ∈ ℝ
Assertion
Ref Expression
circum 𝑃 ⇝ ((2 · π) · 𝑅)
Distinct variable group:   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)

Proof of Theorem circum
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12621 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12351 . . . 4 (⊤ → 1 ∈ ℤ)
3 pirp 25618 . . . . . . . . . 10 π ∈ ℝ+
4 nnrp 12741 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5 rpdivcl 12755 . . . . . . . . . 10 ((π ∈ ℝ+𝑛 ∈ ℝ+) → (π / 𝑛) ∈ ℝ+)
63, 4, 5sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ → (π / 𝑛) ∈ ℝ+)
76rprene0d 12780 . . . . . . . 8 (𝑛 ∈ ℕ → ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
8 eldifsn 4720 . . . . . . . 8 ((π / 𝑛) ∈ (ℝ ∖ {0}) ↔ ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
97, 8sylibr 233 . . . . . . 7 (𝑛 ∈ ℕ → (π / 𝑛) ∈ (ℝ ∖ {0}))
109adantl 482 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → (π / 𝑛) ∈ (ℝ ∖ {0}))
11 eqidd 2739 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛)))
12 eqidd 2739 . . . . . 6 (⊤ → (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)))
13 fveq2 6774 . . . . . . 7 (𝑦 = (π / 𝑛) → (sin‘𝑦) = (sin‘(π / 𝑛)))
14 id 22 . . . . . . 7 (𝑦 = (π / 𝑛) → 𝑦 = (π / 𝑛))
1513, 14oveq12d 7293 . . . . . 6 (𝑦 = (π / 𝑛) → ((sin‘𝑦) / 𝑦) = ((sin‘(π / 𝑛)) / (π / 𝑛)))
1610, 11, 12, 15fmptco 7001 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))))
17 eqid 2738 . . . . . . 7 (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛))
1817, 9fmpti 6986 . . . . . 6 (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})
19 pire 25615 . . . . . . . 8 π ∈ ℝ
2019recni 10989 . . . . . . 7 π ∈ ℂ
21 divcnv 15565 . . . . . . 7 (π ∈ ℂ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
2220, 21mp1i 13 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
23 sinccvg 33631 . . . . . 6 (((𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0}) ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2418, 22, 23sylancr 587 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2516, 24eqbrtrrd 5098 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) ⇝ 1)
26 2re 12047 . . . . . . . 8 2 ∈ ℝ
2726, 19remulcli 10991 . . . . . . 7 (2 · π) ∈ ℝ
28 circum.3 . . . . . . 7 𝑅 ∈ ℝ
2927, 28remulcli 10991 . . . . . 6 ((2 · π) · 𝑅) ∈ ℝ
3029recni 10989 . . . . 5 ((2 · π) · 𝑅) ∈ ℂ
3130a1i 11 . . . 4 (⊤ → ((2 · π) · 𝑅) ∈ ℂ)
32 circum.2 . . . . . 6 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
33 nnex 11979 . . . . . . 7 ℕ ∈ V
3433mptex 7099 . . . . . 6 (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) ∈ V
3532, 34eqeltri 2835 . . . . 5 𝑃 ∈ V
3635a1i 11 . . . 4 (⊤ → 𝑃 ∈ V)
37 eqid 2738 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦))
38 eldifi 4061 . . . . . . . . . . . 12 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ∈ ℝ)
3938resincld 15852 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → (sin‘𝑦) ∈ ℝ)
40 eldifsni 4723 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ≠ 0)
4139, 38, 40redivcld 11803 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) → ((sin‘𝑦) / 𝑦) ∈ ℝ)
4237, 41fmpti 6986 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ
43 fco 6624 . . . . . . . . 9 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ)
4442, 18, 43mp2an 689 . . . . . . . 8 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ
4516mptru 1546 . . . . . . . . 9 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
4645feq1i 6591 . . . . . . . 8 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ ↔ (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ)
4744, 46mpbi 229 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ
4847ffvelrni 6960 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
4948adantl 482 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
5049recnd 11003 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℂ)
5126recni 10989 . . . . . . . . . . . . . . 15 2 ∈ ℂ
5251a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
5320a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → π ∈ ℂ)
54 nncn 11981 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5554adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56 nnne0 12007 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5756adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5852, 53, 55, 57divassd 11786 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · π) / 𝑘) = (2 · (π / 𝑘)))
5958oveq1d 7290 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = ((2 · (π / 𝑘)) / 2))
60 simpr 485 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
61 nndivre 12014 . . . . . . . . . . . . . . 15 ((π ∈ ℝ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6219, 60, 61sylancr 587 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6362recnd 11003 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℂ)
64 2ne0 12077 . . . . . . . . . . . . . 14 2 ≠ 0
6564a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ≠ 0)
6663, 52, 65divcan3d 11756 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · (π / 𝑘)) / 2) = (π / 𝑘))
6759, 66eqtrd 2778 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = (π / 𝑘))
6867fveq2d 6778 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = (sin‘(π / 𝑘)))
6962resincld 15852 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℝ)
7069recnd 11003 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℂ)
71 nnrp 12741 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
7271adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
73 rpdivcl 12755 . . . . . . . . . . . . 13 ((π ∈ ℝ+𝑘 ∈ ℝ+) → (π / 𝑘) ∈ ℝ+)
743, 72, 73sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ+)
7574rpne0d 12777 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ≠ 0)
7670, 63, 75divcan2d 11753 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (sin‘(π / 𝑘)))
7768, 76eqtr4d 2781 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
7877oveq2d 7291 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
7928recni 10989 . . . . . . . . . 10 𝑅 ∈ ℂ
8079a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑅 ∈ ℂ)
81 oveq2 7283 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (π / 𝑛) = (π / 𝑘))
8281fveq2d 6778 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘(π / 𝑛)) = (sin‘(π / 𝑘)))
8382, 81oveq12d 7293 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((sin‘(π / 𝑛)) / (π / 𝑛)) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
84 eqid 2738 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
85 ovex 7308 . . . . . . . . . . . 12 ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ V
8683, 84, 85fvmpt 6875 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8786adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8887, 50eqeltrrd 2840 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ ℂ)
8980, 63, 88mulassd 10998 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9078, 89eqtr4d 2781 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
9190oveq2d 7291 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
92 mulcl 10955 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9351, 55, 92sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
94 mulcl 10955 . . . . . . . 8 ((𝑅 ∈ ℂ ∧ (π / 𝑘) ∈ ℂ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9579, 63, 94sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9693, 95, 88mulassd 10998 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9752, 55, 80, 63mul4d 11187 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · 𝑅) · (𝑘 · (π / 𝑘))))
9853, 55, 57divcan2d 11753 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (π / 𝑘)) = π)
9998oveq2d 7291 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · 𝑅) · π))
10052, 80, 53mul32d 11185 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · π) = ((2 · π) · 𝑅))
10199, 100eqtrd 2778 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · π) · 𝑅))
10297, 101eqtrd 2778 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · π) · 𝑅))
103102oveq1d 7290 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
10491, 96, 1033eqtr2d 2784 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
105 oveq2 7283 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
106 circum.1 . . . . . . . . . . . 12 𝐴 = ((2 · π) / 𝑛)
107 oveq2 7283 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((2 · π) / 𝑛) = ((2 · π) / 𝑘))
108106, 107eqtrid 2790 . . . . . . . . . . 11 (𝑛 = 𝑘𝐴 = ((2 · π) / 𝑘))
109108oveq1d 7290 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴 / 2) = (((2 · π) / 𝑘) / 2))
110109fveq2d 6778 . . . . . . . . 9 (𝑛 = 𝑘 → (sin‘(𝐴 / 2)) = (sin‘(((2 · π) / 𝑘) / 2)))
111110oveq2d 7291 . . . . . . . 8 (𝑛 = 𝑘 → (𝑅 · (sin‘(𝐴 / 2))) = (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))))
112105, 111oveq12d 7293 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
113 ovex 7308 . . . . . . 7 ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) ∈ V
114112, 32, 113fvmpt 6875 . . . . . 6 (𝑘 ∈ ℕ → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
115114adantl 482 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
11687oveq2d 7291 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
117104, 115, 1163eqtr4d 2788 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)))
1181, 2, 25, 31, 36, 50, 117climmulc2 15346 . . 3 (⊤ → 𝑃 ⇝ (((2 · π) · 𝑅) · 1))
119118mptru 1546 . 2 𝑃 ⇝ (((2 · π) · 𝑅) · 1)
12030mulid1i 10979 . 2 (((2 · π) · 𝑅) · 1) = ((2 · π) · 𝑅)
121119, 120breqtri 5099 1 𝑃 ⇝ ((2 · π) · 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wtru 1540  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  {csn 4561   class class class wbr 5074  cmpt 5157  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   / cdiv 11632  cn 11973  2c2 12028  +crp 12730  cli 15193  sincsin 15773  πcpi 15776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator