Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Structured version   Visualization version   GIF version

Theorem circum 34262
Description: The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1 𝐴 = ((2 · π) / 𝑛)
circum.2 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
circum.3 𝑅 ∈ ℝ
Assertion
Ref Expression
circum 𝑃 ⇝ ((2 · π) · 𝑅)
Distinct variable group:   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)

Proof of Theorem circum
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12806 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12534 . . . 4 (⊤ → 1 ∈ ℤ)
3 pirp 25818 . . . . . . . . . 10 π ∈ ℝ+
4 nnrp 12926 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5 rpdivcl 12940 . . . . . . . . . 10 ((π ∈ ℝ+𝑛 ∈ ℝ+) → (π / 𝑛) ∈ ℝ+)
63, 4, 5sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ → (π / 𝑛) ∈ ℝ+)
76rprene0d 12965 . . . . . . . 8 (𝑛 ∈ ℕ → ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
8 eldifsn 4747 . . . . . . . 8 ((π / 𝑛) ∈ (ℝ ∖ {0}) ↔ ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
97, 8sylibr 233 . . . . . . 7 (𝑛 ∈ ℕ → (π / 𝑛) ∈ (ℝ ∖ {0}))
109adantl 482 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → (π / 𝑛) ∈ (ℝ ∖ {0}))
11 eqidd 2737 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛)))
12 eqidd 2737 . . . . . 6 (⊤ → (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)))
13 fveq2 6842 . . . . . . 7 (𝑦 = (π / 𝑛) → (sin‘𝑦) = (sin‘(π / 𝑛)))
14 id 22 . . . . . . 7 (𝑦 = (π / 𝑛) → 𝑦 = (π / 𝑛))
1513, 14oveq12d 7375 . . . . . 6 (𝑦 = (π / 𝑛) → ((sin‘𝑦) / 𝑦) = ((sin‘(π / 𝑛)) / (π / 𝑛)))
1610, 11, 12, 15fmptco 7075 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))))
17 eqid 2736 . . . . . . 7 (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛))
1817, 9fmpti 7060 . . . . . 6 (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})
19 pire 25815 . . . . . . . 8 π ∈ ℝ
2019recni 11169 . . . . . . 7 π ∈ ℂ
21 divcnv 15738 . . . . . . 7 (π ∈ ℂ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
2220, 21mp1i 13 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
23 sinccvg 34261 . . . . . 6 (((𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0}) ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2418, 22, 23sylancr 587 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2516, 24eqbrtrrd 5129 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) ⇝ 1)
26 2re 12227 . . . . . . . 8 2 ∈ ℝ
2726, 19remulcli 11171 . . . . . . 7 (2 · π) ∈ ℝ
28 circum.3 . . . . . . 7 𝑅 ∈ ℝ
2927, 28remulcli 11171 . . . . . 6 ((2 · π) · 𝑅) ∈ ℝ
3029recni 11169 . . . . 5 ((2 · π) · 𝑅) ∈ ℂ
3130a1i 11 . . . 4 (⊤ → ((2 · π) · 𝑅) ∈ ℂ)
32 circum.2 . . . . . 6 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
33 nnex 12159 . . . . . . 7 ℕ ∈ V
3433mptex 7173 . . . . . 6 (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) ∈ V
3532, 34eqeltri 2834 . . . . 5 𝑃 ∈ V
3635a1i 11 . . . 4 (⊤ → 𝑃 ∈ V)
37 eqid 2736 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦))
38 eldifi 4086 . . . . . . . . . . . 12 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ∈ ℝ)
3938resincld 16025 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → (sin‘𝑦) ∈ ℝ)
40 eldifsni 4750 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ≠ 0)
4139, 38, 40redivcld 11983 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) → ((sin‘𝑦) / 𝑦) ∈ ℝ)
4237, 41fmpti 7060 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ
43 fco 6692 . . . . . . . . 9 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ)
4442, 18, 43mp2an 690 . . . . . . . 8 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ
4516mptru 1548 . . . . . . . . 9 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
4645feq1i 6659 . . . . . . . 8 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ ↔ (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ)
4744, 46mpbi 229 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ
4847ffvelcdmi 7034 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
4948adantl 482 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
5049recnd 11183 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℂ)
5126recni 11169 . . . . . . . . . . . . . . 15 2 ∈ ℂ
5251a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
5320a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → π ∈ ℂ)
54 nncn 12161 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5554adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56 nnne0 12187 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5756adantl 482 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5852, 53, 55, 57divassd 11966 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · π) / 𝑘) = (2 · (π / 𝑘)))
5958oveq1d 7372 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = ((2 · (π / 𝑘)) / 2))
60 simpr 485 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
61 nndivre 12194 . . . . . . . . . . . . . . 15 ((π ∈ ℝ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6219, 60, 61sylancr 587 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6362recnd 11183 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℂ)
64 2ne0 12257 . . . . . . . . . . . . . 14 2 ≠ 0
6564a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ≠ 0)
6663, 52, 65divcan3d 11936 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · (π / 𝑘)) / 2) = (π / 𝑘))
6759, 66eqtrd 2776 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = (π / 𝑘))
6867fveq2d 6846 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = (sin‘(π / 𝑘)))
6962resincld 16025 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℝ)
7069recnd 11183 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℂ)
71 nnrp 12926 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
7271adantl 482 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
73 rpdivcl 12940 . . . . . . . . . . . . 13 ((π ∈ ℝ+𝑘 ∈ ℝ+) → (π / 𝑘) ∈ ℝ+)
743, 72, 73sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ+)
7574rpne0d 12962 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ≠ 0)
7670, 63, 75divcan2d 11933 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (sin‘(π / 𝑘)))
7768, 76eqtr4d 2779 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
7877oveq2d 7373 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
7928recni 11169 . . . . . . . . . 10 𝑅 ∈ ℂ
8079a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑅 ∈ ℂ)
81 oveq2 7365 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (π / 𝑛) = (π / 𝑘))
8281fveq2d 6846 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘(π / 𝑛)) = (sin‘(π / 𝑘)))
8382, 81oveq12d 7375 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((sin‘(π / 𝑛)) / (π / 𝑛)) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
84 eqid 2736 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
85 ovex 7390 . . . . . . . . . . . 12 ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ V
8683, 84, 85fvmpt 6948 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8786adantl 482 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8887, 50eqeltrrd 2839 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ ℂ)
8980, 63, 88mulassd 11178 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9078, 89eqtr4d 2779 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
9190oveq2d 7373 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
92 mulcl 11135 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9351, 55, 92sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
94 mulcl 11135 . . . . . . . 8 ((𝑅 ∈ ℂ ∧ (π / 𝑘) ∈ ℂ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9579, 63, 94sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9693, 95, 88mulassd 11178 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9752, 55, 80, 63mul4d 11367 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · 𝑅) · (𝑘 · (π / 𝑘))))
9853, 55, 57divcan2d 11933 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (π / 𝑘)) = π)
9998oveq2d 7373 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · 𝑅) · π))
10052, 80, 53mul32d 11365 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · π) = ((2 · π) · 𝑅))
10199, 100eqtrd 2776 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · π) · 𝑅))
10297, 101eqtrd 2776 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · π) · 𝑅))
103102oveq1d 7372 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
10491, 96, 1033eqtr2d 2782 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
105 oveq2 7365 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
106 circum.1 . . . . . . . . . . . 12 𝐴 = ((2 · π) / 𝑛)
107 oveq2 7365 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((2 · π) / 𝑛) = ((2 · π) / 𝑘))
108106, 107eqtrid 2788 . . . . . . . . . . 11 (𝑛 = 𝑘𝐴 = ((2 · π) / 𝑘))
109108oveq1d 7372 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴 / 2) = (((2 · π) / 𝑘) / 2))
110109fveq2d 6846 . . . . . . . . 9 (𝑛 = 𝑘 → (sin‘(𝐴 / 2)) = (sin‘(((2 · π) / 𝑘) / 2)))
111110oveq2d 7373 . . . . . . . 8 (𝑛 = 𝑘 → (𝑅 · (sin‘(𝐴 / 2))) = (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))))
112105, 111oveq12d 7375 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
113 ovex 7390 . . . . . . 7 ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) ∈ V
114112, 32, 113fvmpt 6948 . . . . . 6 (𝑘 ∈ ℕ → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
115114adantl 482 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
11687oveq2d 7373 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
117104, 115, 1163eqtr4d 2786 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)))
1181, 2, 25, 31, 36, 50, 117climmulc2 15519 . . 3 (⊤ → 𝑃 ⇝ (((2 · π) · 𝑅) · 1))
119118mptru 1548 . 2 𝑃 ⇝ (((2 · π) · 𝑅) · 1)
12030mulid1i 11159 . 2 (((2 · π) · 𝑅) · 1) = ((2 · π) · 𝑅)
121119, 120breqtri 5130 1 𝑃 ⇝ ((2 · π) · 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wtru 1542  wcel 2106  wne 2943  Vcvv 3445  cdif 3907  {csn 4586   class class class wbr 5105  cmpt 5188  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  cn 12153  2c2 12208  +crp 12915  cli 15366  sincsin 15946  πcpi 15949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator