Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Structured version   Visualization version   GIF version

Theorem circum 35668
Description: The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1 𝐴 = ((2 · π) / 𝑛)
circum.2 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
circum.3 𝑅 ∈ ℝ
Assertion
Ref Expression
circum 𝑃 ⇝ ((2 · π) · 𝑅)
Distinct variable group:   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝑃(𝑛)

Proof of Theorem circum
Dummy variables 𝑦 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 12843 . . . 4 ℕ = (ℤ‘1)
2 1zzd 12571 . . . 4 (⊤ → 1 ∈ ℤ)
3 pirp 26377 . . . . . . . . . 10 π ∈ ℝ+
4 nnrp 12970 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5 rpdivcl 12985 . . . . . . . . . 10 ((π ∈ ℝ+𝑛 ∈ ℝ+) → (π / 𝑛) ∈ ℝ+)
63, 4, 5sylancr 587 . . . . . . . . 9 (𝑛 ∈ ℕ → (π / 𝑛) ∈ ℝ+)
76rprene0d 13010 . . . . . . . 8 (𝑛 ∈ ℕ → ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
8 eldifsn 4753 . . . . . . . 8 ((π / 𝑛) ∈ (ℝ ∖ {0}) ↔ ((π / 𝑛) ∈ ℝ ∧ (π / 𝑛) ≠ 0))
97, 8sylibr 234 . . . . . . 7 (𝑛 ∈ ℕ → (π / 𝑛) ∈ (ℝ ∖ {0}))
109adantl 481 . . . . . 6 ((⊤ ∧ 𝑛 ∈ ℕ) → (π / 𝑛) ∈ (ℝ ∖ {0}))
11 eqidd 2731 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛)))
12 eqidd 2731 . . . . . 6 (⊤ → (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)))
13 fveq2 6861 . . . . . . 7 (𝑦 = (π / 𝑛) → (sin‘𝑦) = (sin‘(π / 𝑛)))
14 id 22 . . . . . . 7 (𝑦 = (π / 𝑛) → 𝑦 = (π / 𝑛))
1513, 14oveq12d 7408 . . . . . 6 (𝑦 = (π / 𝑛) → ((sin‘𝑦) / 𝑦) = ((sin‘(π / 𝑛)) / (π / 𝑛)))
1610, 11, 12, 15fmptco 7104 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))))
17 eqid 2730 . . . . . . 7 (𝑛 ∈ ℕ ↦ (π / 𝑛)) = (𝑛 ∈ ℕ ↦ (π / 𝑛))
1817, 9fmpti 7087 . . . . . 6 (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})
19 pire 26373 . . . . . . . 8 π ∈ ℝ
2019recni 11195 . . . . . . 7 π ∈ ℂ
21 divcnv 15826 . . . . . . 7 (π ∈ ℂ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
2220, 21mp1i 13 . . . . . 6 (⊤ → (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0)
23 sinccvg 35667 . . . . . 6 (((𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0}) ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)) ⇝ 0) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2418, 22, 23sylancr 587 . . . . 5 (⊤ → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) ⇝ 1)
2516, 24eqbrtrrd 5134 . . . 4 (⊤ → (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) ⇝ 1)
26 2re 12267 . . . . . . . 8 2 ∈ ℝ
2726, 19remulcli 11197 . . . . . . 7 (2 · π) ∈ ℝ
28 circum.3 . . . . . . 7 𝑅 ∈ ℝ
2927, 28remulcli 11197 . . . . . 6 ((2 · π) · 𝑅) ∈ ℝ
3029recni 11195 . . . . 5 ((2 · π) · 𝑅) ∈ ℂ
3130a1i 11 . . . 4 (⊤ → ((2 · π) · 𝑅) ∈ ℂ)
32 circum.2 . . . . . 6 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))))
33 nnex 12199 . . . . . . 7 ℕ ∈ V
3433mptex 7200 . . . . . 6 (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) ∈ V
3532, 34eqeltri 2825 . . . . 5 𝑃 ∈ V
3635a1i 11 . . . 4 (⊤ → 𝑃 ∈ V)
37 eqid 2730 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) = (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦))
38 eldifi 4097 . . . . . . . . . . . 12 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ∈ ℝ)
3938resincld 16118 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → (sin‘𝑦) ∈ ℝ)
40 eldifsni 4757 . . . . . . . . . . 11 (𝑦 ∈ (ℝ ∖ {0}) → 𝑦 ≠ 0)
4139, 38, 40redivcld 12017 . . . . . . . . . 10 (𝑦 ∈ (ℝ ∖ {0}) → ((sin‘𝑦) / 𝑦) ∈ ℝ)
4237, 41fmpti 7087 . . . . . . . . 9 (𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ
43 fco 6715 . . . . . . . . 9 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)):(ℝ ∖ {0})⟶ℝ ∧ (𝑛 ∈ ℕ ↦ (π / 𝑛)):ℕ⟶(ℝ ∖ {0})) → ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ)
4442, 18, 43mp2an 692 . . . . . . . 8 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ
4516mptru 1547 . . . . . . . . 9 ((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
4645feq1i 6682 . . . . . . . 8 (((𝑦 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑦) / 𝑦)) ∘ (𝑛 ∈ ℕ ↦ (π / 𝑛))):ℕ⟶ℝ ↔ (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ)
4744, 46mpbi 230 . . . . . . 7 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))):ℕ⟶ℝ
4847ffvelcdmi 7058 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
4948adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℝ)
5049recnd 11209 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) ∈ ℂ)
5126recni 11195 . . . . . . . . . . . . . . 15 2 ∈ ℂ
5251a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ∈ ℂ)
5320a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → π ∈ ℂ)
54 nncn 12201 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5554adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℂ)
56 nnne0 12227 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
5756adantl 481 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ≠ 0)
5852, 53, 55, 57divassd 12000 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · π) / 𝑘) = (2 · (π / 𝑘)))
5958oveq1d 7405 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = ((2 · (π / 𝑘)) / 2))
60 simpr 484 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
61 nndivre 12234 . . . . . . . . . . . . . . 15 ((π ∈ ℝ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6219, 60, 61sylancr 587 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ)
6362recnd 11209 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℂ)
64 2ne0 12297 . . . . . . . . . . . . . 14 2 ≠ 0
6564a1i 11 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 2 ≠ 0)
6663, 52, 65divcan3d 11970 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · (π / 𝑘)) / 2) = (π / 𝑘))
6759, 66eqtrd 2765 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) / 𝑘) / 2) = (π / 𝑘))
6867fveq2d 6865 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = (sin‘(π / 𝑘)))
6962resincld 16118 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℝ)
7069recnd 11209 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(π / 𝑘)) ∈ ℂ)
71 nnrp 12970 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
7271adantl 481 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
73 rpdivcl 12985 . . . . . . . . . . . . 13 ((π ∈ ℝ+𝑘 ∈ ℝ+) → (π / 𝑘) ∈ ℝ+)
743, 72, 73sylancr 587 . . . . . . . . . . . 12 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ∈ ℝ+)
7574rpne0d 13007 . . . . . . . . . . 11 ((⊤ ∧ 𝑘 ∈ ℕ) → (π / 𝑘) ≠ 0)
7670, 63, 75divcan2d 11967 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (sin‘(π / 𝑘)))
7768, 76eqtr4d 2768 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → (sin‘(((2 · π) / 𝑘) / 2)) = ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
7877oveq2d 7406 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
7928recni 11195 . . . . . . . . . 10 𝑅 ∈ ℂ
8079a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → 𝑅 ∈ ℂ)
81 oveq2 7398 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (π / 𝑛) = (π / 𝑘))
8281fveq2d 6865 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (sin‘(π / 𝑛)) = (sin‘(π / 𝑘)))
8382, 81oveq12d 7408 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((sin‘(π / 𝑛)) / (π / 𝑛)) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
84 eqid 2730 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛))) = (𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))
85 ovex 7423 . . . . . . . . . . . 12 ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ V
8683, 84, 85fvmpt 6971 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8786adantl 481 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘) = ((sin‘(π / 𝑘)) / (π / 𝑘)))
8887, 50eqeltrrd 2830 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((sin‘(π / 𝑘)) / (π / 𝑘)) ∈ ℂ)
8980, 63, 88mulassd 11204 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (𝑅 · ((π / 𝑘) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9078, 89eqtr4d 2768 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))) = ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
9190oveq2d 7406 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
92 mulcl 11159 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
9351, 55, 92sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (2 · 𝑘) ∈ ℂ)
94 mulcl 11159 . . . . . . . 8 ((𝑅 ∈ ℂ ∧ (π / 𝑘) ∈ ℂ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9579, 63, 94sylancr 587 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑅 · (π / 𝑘)) ∈ ℂ)
9693, 95, 88mulassd 11204 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = ((2 · 𝑘) · ((𝑅 · (π / 𝑘)) · ((sin‘(π / 𝑘)) / (π / 𝑘)))))
9752, 55, 80, 63mul4d 11393 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · 𝑅) · (𝑘 · (π / 𝑘))))
9853, 55, 57divcan2d 11967 . . . . . . . . . 10 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑘 · (π / 𝑘)) = π)
9998oveq2d 7406 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · 𝑅) · π))
10052, 80, 53mul32d 11391 . . . . . . . . 9 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · π) = ((2 · π) · 𝑅))
10199, 100eqtrd 2765 . . . . . . . 8 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑅) · (𝑘 · (π / 𝑘))) = ((2 · π) · 𝑅))
10297, 101eqtrd 2765 . . . . . . 7 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (π / 𝑘))) = ((2 · π) · 𝑅))
103102oveq1d 7405 . . . . . 6 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · 𝑘) · (𝑅 · (π / 𝑘))) · ((sin‘(π / 𝑘)) / (π / 𝑘))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
10491, 96, 1033eqtr2d 2771 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
105 oveq2 7398 . . . . . . . 8 (𝑛 = 𝑘 → (2 · 𝑛) = (2 · 𝑘))
106 circum.1 . . . . . . . . . . . 12 𝐴 = ((2 · π) / 𝑛)
107 oveq2 7398 . . . . . . . . . . . 12 (𝑛 = 𝑘 → ((2 · π) / 𝑛) = ((2 · π) / 𝑘))
108106, 107eqtrid 2777 . . . . . . . . . . 11 (𝑛 = 𝑘𝐴 = ((2 · π) / 𝑘))
109108oveq1d 7405 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴 / 2) = (((2 · π) / 𝑘) / 2))
110109fveq2d 6865 . . . . . . . . 9 (𝑛 = 𝑘 → (sin‘(𝐴 / 2)) = (sin‘(((2 · π) / 𝑘) / 2)))
111110oveq2d 7406 . . . . . . . 8 (𝑛 = 𝑘 → (𝑅 · (sin‘(𝐴 / 2))) = (𝑅 · (sin‘(((2 · π) / 𝑘) / 2))))
112105, 111oveq12d 7408 . . . . . . 7 (𝑛 = 𝑘 → ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2)))) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
113 ovex 7423 . . . . . . 7 ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))) ∈ V
114112, 32, 113fvmpt 6971 . . . . . 6 (𝑘 ∈ ℕ → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
115114adantl 481 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = ((2 · 𝑘) · (𝑅 · (sin‘(((2 · π) / 𝑘) / 2)))))
11687oveq2d 7406 . . . . 5 ((⊤ ∧ 𝑘 ∈ ℕ) → (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)) = (((2 · π) · 𝑅) · ((sin‘(π / 𝑘)) / (π / 𝑘))))
117104, 115, 1163eqtr4d 2775 . . . 4 ((⊤ ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) = (((2 · π) · 𝑅) · ((𝑛 ∈ ℕ ↦ ((sin‘(π / 𝑛)) / (π / 𝑛)))‘𝑘)))
1181, 2, 25, 31, 36, 50, 117climmulc2 15610 . . 3 (⊤ → 𝑃 ⇝ (((2 · π) · 𝑅) · 1))
119118mptru 1547 . 2 𝑃 ⇝ (((2 · π) · 𝑅) · 1)
12030mulridi 11185 . 2 (((2 · π) · 𝑅) · 1) = ((2 · π) · 𝑅)
121119, 120breqtri 5135 1 𝑃 ⇝ ((2 · π) · 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wtru 1541  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  {csn 4592   class class class wbr 5110  cmpt 5191  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  cn 12193  2c2 12248  +crp 12958  cli 15457  sincsin 16036  πcpi 16039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator