Step | Hyp | Ref
| Expression |
1 | | cnex 10661 |
. . . 4
⊢ ℂ
∈ V |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℂ ∈
V) |
3 | | sumex 15097 |
. . . 4
⊢
Σ𝑘 ∈
(0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ V |
4 | 3 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ V) |
5 | | sumex 15097 |
. . . 4
⊢
Σ𝑘 ∈
(0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ V |
6 | 5 | a1i 11 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) ∈ V) |
7 | | plyaddlem.f |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
8 | | plyaddlem.g |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
9 | 2, 4, 6, 7, 8 | offval2 7429 |
. 2
⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
10 | | fveq2 6662 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝐵‘𝑚) = (𝐵‘𝑛)) |
11 | | oveq2 7163 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑧↑𝑚) = (𝑧↑𝑛)) |
12 | 10, 11 | oveq12d 7173 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((𝐵‘𝑚) · (𝑧↑𝑚)) = ((𝐵‘𝑛) · (𝑧↑𝑛))) |
13 | 12 | oveq2d 7171 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑚) · (𝑧↑𝑚))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
14 | | fveq2 6662 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 − 𝑘) → (𝐵‘𝑚) = (𝐵‘(𝑛 − 𝑘))) |
15 | | oveq2 7163 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 − 𝑘) → (𝑧↑𝑚) = (𝑧↑(𝑛 − 𝑘))) |
16 | 14, 15 | oveq12d 7173 |
. . . . . . 7
⊢ (𝑚 = (𝑛 − 𝑘) → ((𝐵‘𝑚) · (𝑧↑𝑚)) = ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) |
17 | 16 | oveq2d 7171 |
. . . . . 6
⊢ (𝑚 = (𝑛 − 𝑘) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑚) · (𝑧↑𝑚))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
18 | | elfznn0 13054 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(𝑀 + 𝑁)) → 𝑘 ∈ ℕ0) |
19 | | plyaddlem.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
20 | 19 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
21 | 20 | ffvelrnda 6847 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
22 | | expcl 13502 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
23 | 22 | adantll 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
24 | 21, 23 | mulcld 10704 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
25 | 18, 24 | sylan2 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑀 + 𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
26 | | elfznn0 13054 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)) → 𝑛 ∈ ℕ0) |
27 | | plyaddlem.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
28 | 27 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵:ℕ0⟶ℂ) |
29 | 28 | ffvelrnda 6847 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → (𝐵‘𝑛) ∈ ℂ) |
30 | | expcl 13502 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ 𝑛 ∈ ℕ0)
→ (𝑧↑𝑛) ∈
ℂ) |
31 | 30 | adantll 713 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → (𝑧↑𝑛) ∈ ℂ) |
32 | 29, 31 | mulcld 10704 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ ℕ0) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
33 | 26, 32 | sylan2 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
34 | 25, 33 | anim12dan 621 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ ∧ ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ)) |
35 | | mulcl 10664 |
. . . . . . 7
⊢ ((((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ ∧ ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ (𝑘 ∈ (0...(𝑀 + 𝑁)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘)))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
37 | 13, 17, 36 | fsum0diag2 15191 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...(𝑀 + 𝑁))Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
38 | | plyaddlem.m |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
39 | 38 | nn0cnd 12001 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ ℂ) |
40 | 39 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑀 ∈ ℂ) |
41 | | plyaddlem.n |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
42 | 41 | nn0cnd 12001 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
43 | 42 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℂ) |
44 | | elfznn0 13054 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
45 | 44 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℕ0) |
46 | 45 | nn0cnd 12001 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑘 ∈ ℂ) |
47 | 40, 43, 46 | addsubd 11061 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) = ((𝑀 − 𝑘) + 𝑁)) |
48 | | fznn0sub 12993 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝑀) → (𝑀 − 𝑘) ∈
ℕ0) |
49 | 48 | adantl 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 − 𝑘) ∈
ℕ0) |
50 | | nn0uz 12325 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
51 | 49, 50 | eleqtrdi 2862 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (𝑀 − 𝑘) ∈
(ℤ≥‘0)) |
52 | 41 | nn0zd 12129 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℤ) |
53 | 52 | ad2antrr 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑁 ∈ ℤ) |
54 | | eluzadd 12318 |
. . . . . . . . . . . 12
⊢ (((𝑀 − 𝑘) ∈ (ℤ≥‘0)
∧ 𝑁 ∈ ℤ)
→ ((𝑀 − 𝑘) + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
55 | 51, 53, 54 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 − 𝑘) + 𝑁) ∈ (ℤ≥‘(0 +
𝑁))) |
56 | 47, 55 | eqeltrd 2852 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘(0 +
𝑁))) |
57 | 43 | addid2d 10884 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0 + 𝑁) = 𝑁) |
58 | 57 | fveq2d 6666 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (ℤ≥‘(0 +
𝑁)) =
(ℤ≥‘𝑁)) |
59 | 56, 58 | eleqtrd 2854 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘𝑁)) |
60 | | fzss2 13001 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑁) − 𝑘) ∈ (ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...((𝑀 + 𝑁) − 𝑘))) |
61 | 59, 60 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0...𝑁) ⊆ (0...((𝑀 + 𝑁) − 𝑘))) |
62 | 44, 24 | sylan2 595 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
63 | 62 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
64 | | elfznn0 13054 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ (0...𝑁) → 𝑛 ∈ ℕ0) |
65 | 64, 32 | sylan2 595 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
66 | 65 | adantlr 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
67 | 63, 66 | mulcld 10704 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...𝑁)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
68 | | eldifn 4035 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → ¬ 𝑛 ∈ (0...𝑁)) |
69 | 68 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ¬ 𝑛 ∈ (0...𝑁)) |
70 | | eldifi 4034 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) |
71 | 70, 26 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁)) → 𝑛 ∈ ℕ0) |
72 | 71 | adantl 485 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ ℕ0) |
73 | | peano2nn0 11979 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
74 | 41, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
75 | 74, 50 | eleqtrdi 2862 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘0)) |
76 | | uzsplit 13033 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
77 | 75, 76 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1)))) |
78 | 50, 77 | syl5eq 2805 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ℕ0 =
((0...((𝑁 + 1) − 1))
∪ (ℤ≥‘(𝑁 + 1)))) |
79 | | ax-1cn 10638 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ∈
ℂ |
80 | | pncan 10935 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
81 | 42, 79, 80 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
82 | 81 | oveq2d 7171 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (0...((𝑁 + 1) − 1)) = (0...𝑁)) |
83 | 82 | uneq1d 4069 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) = ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
84 | 78, 83 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ℕ0 =
((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
85 | 84 | ad3antrrr 729 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ℕ0 = ((0...𝑁) ∪
(ℤ≥‘(𝑁 + 1)))) |
86 | 72, 85 | eleqtrd 2854 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1)))) |
87 | | elun 4056 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ((0...𝑁) ∪ (ℤ≥‘(𝑁 + 1))) ↔ (𝑛 ∈ (0...𝑁) ∨ 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) |
88 | 86, 87 | sylib 221 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑛 ∈ (0...𝑁) ∨ 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) |
89 | 88 | ord 861 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (¬ 𝑛 ∈ (0...𝑁) → 𝑛 ∈ (ℤ≥‘(𝑁 + 1)))) |
90 | 69, 89 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → 𝑛 ∈ (ℤ≥‘(𝑁 + 1))) |
91 | 27 | ffund 6506 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → Fun 𝐵) |
92 | | ssun2 4080 |
. . . . . . . . . . . . . . . . . . 19
⊢
(ℤ≥‘(𝑁 + 1)) ⊆ ((0...((𝑁 + 1) − 1)) ∪
(ℤ≥‘(𝑁 + 1))) |
93 | 92, 78 | sseqtrrid 3947 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆
ℕ0) |
94 | 27 | fdmd 6512 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → dom 𝐵 = ℕ0) |
95 | 93, 94 | sseqtrrd 3935 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) |
96 | | funfvima2 6990 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
𝐵 ∧
(ℤ≥‘(𝑁 + 1)) ⊆ dom 𝐵) → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
97 | 91, 95, 96 | syl2anc 587 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
98 | 97 | ad3antrrr 729 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑛 ∈ (ℤ≥‘(𝑁 + 1)) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1))))) |
99 | 90, 98 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) ∈ (𝐵 “
(ℤ≥‘(𝑁 + 1)))) |
100 | | plyaddlem.b2 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
101 | 100 | ad3antrrr 729 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵 “
(ℤ≥‘(𝑁 + 1))) = {0}) |
102 | 99, 101 | eleqtrd 2854 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) ∈ {0}) |
103 | | elsni 4542 |
. . . . . . . . . . . . 13
⊢ ((𝐵‘𝑛) ∈ {0} → (𝐵‘𝑛) = 0) |
104 | 102, 103 | syl 17 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝐵‘𝑛) = 0) |
105 | 104 | oveq1d 7170 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) = (0 · (𝑧↑𝑛))) |
106 | | simplr 768 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → 𝑧 ∈ ℂ) |
107 | 106, 71, 30 | syl2an 598 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (𝑧↑𝑛) ∈ ℂ) |
108 | 107 | mul02d 10881 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (0 · (𝑧↑𝑛)) = 0) |
109 | 105, 108 | eqtrd 2793 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) = 0) |
110 | 109 | oveq2d 7171 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (((𝐴‘𝑘) · (𝑧↑𝑘)) · 0)) |
111 | 62 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
112 | 111 | mul01d 10882 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · 0) = 0) |
113 | 110, 112 | eqtrd 2793 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ ((0...((𝑀 + 𝑁) − 𝑘)) ∖ (0...𝑁))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
114 | | fzfid 13395 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) |
115 | 61, 67, 113, 114 | fsumss 15135 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
116 | 115 | sumeq2dv 15113 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
117 | | fzfid 13395 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
118 | | fzfid 13395 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ∈ Fin) |
119 | 117, 118,
62, 65 | fsum2mul 15197 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...𝑁)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)))) |
120 | 39, 42 | addcomd 10885 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑀 + 𝑁) = (𝑁 + 𝑀)) |
121 | 41, 50 | eleqtrdi 2862 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘0)) |
122 | 38 | nn0zd 12129 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
123 | | eluzadd 12318 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘0) ∧ 𝑀 ∈ ℤ) → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
124 | 121, 122,
123 | syl2anc 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘(0 +
𝑀))) |
125 | 39 | addid2d 10884 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + 𝑀) = 𝑀) |
126 | 125 | fveq2d 6666 |
. . . . . . . . . . 11
⊢ (𝜑 →
(ℤ≥‘(0 + 𝑀)) = (ℤ≥‘𝑀)) |
127 | 124, 126 | eleqtrd 2854 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑁 + 𝑀) ∈ (ℤ≥‘𝑀)) |
128 | 120, 127 | eqeltrd 2852 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 + 𝑁) ∈ (ℤ≥‘𝑀)) |
129 | | fzss2 13001 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘𝑀) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
130 | 128, 129 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
131 | 130 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ⊆ (0...(𝑀 + 𝑁))) |
132 | 62 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
133 | 33 | adantlr 714 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
134 | 132, 133 | mulcld 10704 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
135 | 114, 134 | fsumcl 15143 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑀)) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) ∈ ℂ) |
136 | | eldifn 4035 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → ¬ 𝑘 ∈ (0...𝑀)) |
137 | 136 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ¬ 𝑘 ∈ (0...𝑀)) |
138 | | eldifi 4034 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ (0...(𝑀 + 𝑁))) |
139 | 138, 18 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀)) → 𝑘 ∈ ℕ0) |
140 | 139 | adantl 485 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ℕ0) |
141 | | peano2nn0 11979 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑀 ∈ ℕ0
→ (𝑀 + 1) ∈
ℕ0) |
142 | 38, 141 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝑀 + 1) ∈
ℕ0) |
143 | 142, 50 | eleqtrdi 2862 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝑀 + 1) ∈
(ℤ≥‘0)) |
144 | | uzsplit 13033 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑀 + 1) ∈
(ℤ≥‘0) → (ℤ≥‘0) =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
145 | 143, 144 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 →
(ℤ≥‘0) = ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1)))) |
146 | 50, 145 | syl5eq 2805 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ℕ0 =
((0...((𝑀 + 1) − 1))
∪ (ℤ≥‘(𝑀 + 1)))) |
147 | | pncan 10935 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑀 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑀 + 1)
− 1) = 𝑀) |
148 | 39, 79, 147 | sylancl 589 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
149 | 148 | oveq2d 7171 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (0...((𝑀 + 1) − 1)) = (0...𝑀)) |
150 | 149 | uneq1d 4069 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) = ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
151 | 146, 150 | eqtrd 2793 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → ℕ0 =
((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
152 | 151 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ℕ0 = ((0...𝑀) ∪
(ℤ≥‘(𝑀 + 1)))) |
153 | 140, 152 | eleqtrd 2854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1)))) |
154 | | elun 4056 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ((0...𝑀) ∪ (ℤ≥‘(𝑀 + 1))) ↔ (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
155 | 153, 154 | sylib 221 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑘 ∈ (0...𝑀) ∨ 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
156 | 155 | ord 861 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (¬ 𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1)))) |
157 | 137, 156 | mpd 15 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → 𝑘 ∈ (ℤ≥‘(𝑀 + 1))) |
158 | 19 | ffund 6506 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → Fun 𝐴) |
159 | | ssun2 4080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(ℤ≥‘(𝑀 + 1)) ⊆ ((0...((𝑀 + 1) − 1)) ∪
(ℤ≥‘(𝑀 + 1))) |
160 | 159, 146 | sseqtrrid 3947 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆
ℕ0) |
161 | 19 | fdmd 6512 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → dom 𝐴 = ℕ0) |
162 | 160, 161 | sseqtrrd 3935 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 →
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) |
163 | | funfvima2 6990 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
𝐴 ∧
(ℤ≥‘(𝑀 + 1)) ⊆ dom 𝐴) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
164 | 158, 162,
163 | syl2anc 587 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
165 | 164 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑘 ∈ (ℤ≥‘(𝑀 + 1)) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1))))) |
166 | 157, 165 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ (𝐴 “
(ℤ≥‘(𝑀 + 1)))) |
167 | | plyaddlem.a2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
168 | 167 | ad2antrr 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
169 | 166, 168 | eleqtrd 2854 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) ∈ {0}) |
170 | | elsni 4542 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴‘𝑘) ∈ {0} → (𝐴‘𝑘) = 0) |
171 | 169, 170 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝐴‘𝑘) = 0) |
172 | 171 | oveq1d 7170 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
173 | 139, 23 | sylan2 595 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (𝑧↑𝑘) ∈ ℂ) |
174 | 173 | mul02d 10881 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0 · (𝑧↑𝑘)) = 0) |
175 | 172, 174 | eqtrd 2793 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
176 | 175 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
177 | 176 | oveq1d 7170 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = (0 · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
178 | 33 | adantlr 714 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → ((𝐵‘𝑛) · (𝑧↑𝑛)) ∈ ℂ) |
179 | 178 | mul02d 10881 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (0 · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
180 | 177, 179 | eqtrd 2793 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) ∧ 𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
181 | 180 | sumeq2dv 15113 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0) |
182 | | fzfid 13395 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) |
183 | 182 | olcd 871 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → ((0...((𝑀 + 𝑁) − 𝑘)) ⊆ (ℤ≥‘0)
∨ (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin)) |
184 | | sumz 15132 |
. . . . . . . . 9
⊢
(((0...((𝑀 + 𝑁) − 𝑘)) ⊆ (ℤ≥‘0)
∨ (0...((𝑀 + 𝑁) − 𝑘)) ∈ Fin) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0 = 0) |
185 | 183, 184 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))0 = 0) |
186 | 181, 185 | eqtrd 2793 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...(𝑀 + 𝑁)) ∖ (0...𝑀))) → Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = 0) |
187 | | fzfid 13395 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...(𝑀 + 𝑁)) ∈ Fin) |
188 | 131, 135,
186, 187 | fsumss 15135 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
189 | 116, 119,
188 | 3eqtr3d 2801 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛))) = Σ𝑘 ∈ (0...(𝑀 + 𝑁))Σ𝑛 ∈ (0...((𝑀 + 𝑁) − 𝑘))(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘𝑛) · (𝑧↑𝑛)))) |
190 | | fzfid 13395 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (0...𝑛) ∈ Fin) |
191 | | elfznn0 13054 |
. . . . . . . . 9
⊢ (𝑛 ∈ (0...(𝑀 + 𝑁)) → 𝑛 ∈ ℕ0) |
192 | 191, 31 | sylan2 595 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (𝑧↑𝑛) ∈ ℂ) |
193 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝜑) |
194 | | elfznn0 13054 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) |
195 | 19 | ffvelrnda 6847 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
196 | 193, 194,
195 | syl2an 598 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐴‘𝑘) ∈ ℂ) |
197 | | fznn0sub 12993 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝑛) → (𝑛 − 𝑘) ∈
ℕ0) |
198 | 27 | ffvelrnda 6847 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝐵‘(𝑛 − 𝑘)) ∈ ℂ) |
199 | 193, 197,
198 | syl2an 598 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝐵‘(𝑛 − 𝑘)) ∈ ℂ) |
200 | 196, 199 | mulcld 10704 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) ∈ ℂ) |
201 | 190, 192,
200 | fsummulc1 15193 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
202 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → 𝑧 ∈ ℂ) |
203 | 202, 194,
22 | syl2an 598 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
204 | | expcl 13502 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ ℂ ∧ (𝑛 − 𝑘) ∈ ℕ0) → (𝑧↑(𝑛 − 𝑘)) ∈ ℂ) |
205 | 202, 197,
204 | syl2an 598 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑛 − 𝑘)) ∈ ℂ) |
206 | 196, 203,
199, 205 | mul4d 10895 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘))))) |
207 | 202 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑧 ∈ ℂ) |
208 | 197 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑛 − 𝑘) ∈
ℕ0) |
209 | 194 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℕ0) |
210 | 207, 208,
209 | expaddd 13567 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑘 + (𝑛 − 𝑘))) = ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘)))) |
211 | 209 | nn0cnd 12001 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑘 ∈ ℂ) |
212 | 191 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑛 ∈ ℕ0) |
213 | 212 | nn0cnd 12001 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → 𝑛 ∈ ℂ) |
214 | 211, 213 | pncan3d 11043 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑘 + (𝑛 − 𝑘)) = 𝑛) |
215 | 214 | oveq2d 7171 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑(𝑘 + (𝑛 − 𝑘))) = (𝑧↑𝑛)) |
216 | 210, 215 | eqtr3d 2795 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘))) = (𝑧↑𝑛)) |
217 | 216 | oveq2d 7171 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · ((𝑧↑𝑘) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
218 | 206, 217 | eqtrd 2793 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) ∧ 𝑘 ∈ (0...𝑛)) → (((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = (((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
219 | 218 | sumeq2dv 15113 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘)))) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) |
220 | 201, 219 | eqtr4d 2796 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑛 ∈ (0...(𝑀 + 𝑁))) → (Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
221 | 220 | sumeq2dv 15113 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = Σ𝑛 ∈ (0...(𝑀 + 𝑁))Σ𝑘 ∈ (0...𝑛)(((𝐴‘𝑘) · (𝑧↑𝑘)) · ((𝐵‘(𝑛 − 𝑘)) · (𝑧↑(𝑛 − 𝑘))))) |
222 | 37, 189, 221 | 3eqtr4rd 2804 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)))) |
223 | | fveq2 6662 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝐵‘𝑛) = (𝐵‘𝑘)) |
224 | | oveq2 7163 |
. . . . . . 7
⊢ (𝑛 = 𝑘 → (𝑧↑𝑛) = (𝑧↑𝑘)) |
225 | 223, 224 | oveq12d 7173 |
. . . . . 6
⊢ (𝑛 = 𝑘 → ((𝐵‘𝑛) · (𝑧↑𝑛)) = ((𝐵‘𝑘) · (𝑧↑𝑘))) |
226 | 225 | cbvsumv 15106 |
. . . . 5
⊢
Σ𝑛 ∈
(0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛)) = Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)) |
227 | 226 | oveq2i 7166 |
. . . 4
⊢
(Σ𝑘 ∈
(0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑛 ∈ (0...𝑁)((𝐵‘𝑛) · (𝑧↑𝑛))) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))) |
228 | 222, 227 | eqtrdi 2809 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)) = (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
229 | 228 | mpteq2dva 5130 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)) · Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘))))) |
230 | 9, 229 | eqtr4d 2796 |
1
⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑛 ∈ (0...(𝑀 + 𝑁))(Σ𝑘 ∈ (0...𝑛)((𝐴‘𝑘) · (𝐵‘(𝑛 − 𝑘))) · (𝑧↑𝑛)))) |