MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulcl Structured version   Visualization version   GIF version

Theorem dchrmulcl 27160
Description: Closure of the group operation on Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrmul.t · = (+g𝐺)
dchrmul.x (𝜑𝑋𝐷)
dchrmul.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchrmulcl (𝜑 → (𝑋 · 𝑌) ∈ 𝐷)

Proof of Theorem dchrmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmul.t . . 3 · = (+g𝐺)
5 dchrmul.x . . 3 (𝜑𝑋𝐷)
6 dchrmul.y . . 3 (𝜑𝑌𝐷)
71, 2, 3, 4, 5, 6dchrmul 27159 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑋f · 𝑌))
8 mulcl 11152 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98adantl 481 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
10 eqid 2729 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
111, 2, 3, 10, 5dchrf 27153 . . . 4 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
121, 2, 3, 10, 6dchrf 27153 . . . 4 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
13 fvexd 6873 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
14 inidm 4190 . . . 4 ((Base‘𝑍) ∩ (Base‘𝑍)) = (Base‘𝑍)
159, 11, 12, 13, 13, 14off 7671 . . 3 (𝜑 → (𝑋f · 𝑌):(Base‘𝑍)⟶ℂ)
16 eqid 2729 . . . . . . . 8 (Unit‘𝑍) = (Unit‘𝑍)
1710, 16unitcl 20284 . . . . . . 7 (𝑥 ∈ (Unit‘𝑍) → 𝑥 ∈ (Base‘𝑍))
1810, 16unitcl 20284 . . . . . . 7 (𝑦 ∈ (Unit‘𝑍) → 𝑦 ∈ (Base‘𝑍))
1917, 18anim12i 613 . . . . . 6 ((𝑥 ∈ (Unit‘𝑍) ∧ 𝑦 ∈ (Unit‘𝑍)) → (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)))
201, 3dchrrcl 27151 . . . . . . . . . . . . . 14 (𝑋𝐷𝑁 ∈ ℕ)
215, 20syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
221, 2, 10, 16, 21, 3dchrelbas2 27148 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))))
235, 22mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
2423simpld 494 . . . . . . . . . 10 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2625, 10mgpbas 20054 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
27 eqid 2729 . . . . . . . . . . . . 13 (.r𝑍) = (.r𝑍)
2825, 27mgpplusg 20053 . . . . . . . . . . . 12 (.r𝑍) = (+g‘(mulGrp‘𝑍))
29 eqid 2729 . . . . . . . . . . . . 13 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
30 cnfldmul 21272 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
3129, 30mgpplusg 20053 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘ℂfld))
3226, 28, 31mhmlin 18720 . . . . . . . . . . 11 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
33323expb 1120 . . . . . . . . . 10 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
3424, 33sylan 580 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
351, 2, 10, 16, 21, 3dchrelbas2 27148 . . . . . . . . . . . 12 (𝜑 → (𝑌𝐷 ↔ (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑌𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))))
366, 35mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑌𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
3736simpld 494 . . . . . . . . . 10 (𝜑𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3826, 28, 31mhmlin 18720 . . . . . . . . . . 11 ((𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
39383expb 1120 . . . . . . . . . 10 ((𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
4037, 39sylan 580 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
4134, 40oveq12d 7405 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))) = (((𝑋𝑥) · (𝑋𝑦)) · ((𝑌𝑥) · (𝑌𝑦))))
4211ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
4342adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋𝑥) ∈ ℂ)
44 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → 𝑦 ∈ (Base‘𝑍))
45 ffvelcdm 7053 . . . . . . . . . 10 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑋𝑦) ∈ ℂ)
4611, 44, 45syl2an 596 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋𝑦) ∈ ℂ)
4712ffvelcdmda 7056 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑌𝑥) ∈ ℂ)
4847adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌𝑥) ∈ ℂ)
49 ffvelcdm 7053 . . . . . . . . . 10 ((𝑌:(Base‘𝑍)⟶ℂ ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑌𝑦) ∈ ℂ)
5012, 44, 49syl2an 596 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌𝑦) ∈ ℂ)
5143, 46, 48, 50mul4d 11386 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (((𝑋𝑥) · (𝑋𝑦)) · ((𝑌𝑥) · (𝑌𝑦))) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
5241, 51eqtrd 2764 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
5311ffnd 6689 . . . . . . . . 9 (𝜑𝑋 Fn (Base‘𝑍))
5453adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑋 Fn (Base‘𝑍))
5512ffnd 6689 . . . . . . . . 9 (𝜑𝑌 Fn (Base‘𝑍))
5655adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑌 Fn (Base‘𝑍))
57 fvexd 6873 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (Base‘𝑍) ∈ V)
5821nnnn0d 12503 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
592zncrng 21454 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
60 crngring 20154 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6158, 59, 603syl 18 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
6210, 27ringcl 20159 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
63623expb 1120 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
6461, 63sylan 580 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
65 fnfvof 7670 . . . . . . . 8 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))))
6654, 56, 57, 64, 65syl22anc 838 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))))
6753adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑋 Fn (Base‘𝑍))
6855adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑌 Fn (Base‘𝑍))
69 fvexd 6873 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (Base‘𝑍) ∈ V)
70 simpr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑥 ∈ (Base‘𝑍))
71 fnfvof 7670 . . . . . . . . . 10 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ 𝑥 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
7267, 68, 69, 70, 71syl22anc 838 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
7372adantrr 717 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
74 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑦 ∈ (Base‘𝑍))
75 fnfvof 7670 . . . . . . . . 9 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑦) = ((𝑋𝑦) · (𝑌𝑦)))
7654, 56, 57, 74, 75syl22anc 838 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑦) = ((𝑋𝑦) · (𝑌𝑦)))
7773, 76oveq12d 7405 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
7852, 66, 773eqtr4d 2774 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
7919, 78sylan2 593 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝑍) ∧ 𝑦 ∈ (Unit‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
8079ralrimivva 3180 . . . 4 (𝜑 → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
81 eqid 2729 . . . . . . . 8 (1r𝑍) = (1r𝑍)
8210, 81ringidcl 20174 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ (Base‘𝑍))
8361, 82syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ (Base‘𝑍))
84 fnfvof 7670 . . . . . 6 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ (1r𝑍) ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(1r𝑍)) = ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))))
8553, 55, 13, 83, 84syl22anc 838 . . . . 5 (𝜑 → ((𝑋f · 𝑌)‘(1r𝑍)) = ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))))
8625, 81ringidval 20092 . . . . . . . . 9 (1r𝑍) = (0g‘(mulGrp‘𝑍))
87 cnfld1 21305 . . . . . . . . . 10 1 = (1r‘ℂfld)
8829, 87ringidval 20092 . . . . . . . . 9 1 = (0g‘(mulGrp‘ℂfld))
8986, 88mhm0 18721 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9024, 89syl 17 . . . . . . 7 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9186, 88mhm0 18721 . . . . . . . 8 (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑌‘(1r𝑍)) = 1)
9237, 91syl 17 . . . . . . 7 (𝜑 → (𝑌‘(1r𝑍)) = 1)
9390, 92oveq12d 7405 . . . . . 6 (𝜑 → ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))) = (1 · 1))
94 1t1e1 12343 . . . . . 6 (1 · 1) = 1
9593, 94eqtrdi 2780 . . . . 5 (𝜑 → ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))) = 1)
9685, 95eqtrd 2764 . . . 4 (𝜑 → ((𝑋f · 𝑌)‘(1r𝑍)) = 1)
9772neeq1d 2984 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 ↔ ((𝑋𝑥) · (𝑌𝑥)) ≠ 0))
9842, 47mulne0bd 11829 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0) ↔ ((𝑋𝑥) · (𝑌𝑥)) ≠ 0))
9997, 98bitr4d 282 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 ↔ ((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0)))
10023simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
101100r19.21bi 3229 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
102101adantrd 491 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍)))
10399, 102sylbid 240 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
104103ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10580, 96, 1043jca 1128 . . 3 (𝜑 → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) ∧ ((𝑋f · 𝑌)‘(1r𝑍)) = 1 ∧ ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
1061, 2, 10, 16, 21, 3dchrelbas3 27149 . . 3 (𝜑 → ((𝑋f · 𝑌) ∈ 𝐷 ↔ ((𝑋f · 𝑌):(Base‘𝑍)⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) ∧ ((𝑋f · 𝑌)‘(1r𝑍)) = 1 ∧ ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10715, 105, 106mpbir2and 713 . 2 (𝜑 → (𝑋f · 𝑌) ∈ 𝐷)
1087, 107eqeltrd 2828 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  cc 11066  0cc0 11068  1c1 11069   · cmul 11073  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220  .rcmulr 17221   MndHom cmhm 18708  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  Unitcui 20264  fldccnfld 21264  ℤ/nczn 21412  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-nsg 19056  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119  df-2idl 21160  df-cnfld 21265  df-zring 21357  df-zn 21416  df-dchr 27144
This theorem is referenced by:  dchrabl  27165  dchrinv  27172
  Copyright terms: Public domain W3C validator