MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulcl Structured version   Visualization version   GIF version

Theorem dchrmulcl 25825
Description: Closure of the group operation on Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrmul.t · = (+g𝐺)
dchrmul.x (𝜑𝑋𝐷)
dchrmul.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchrmulcl (𝜑 → (𝑋 · 𝑌) ∈ 𝐷)

Proof of Theorem dchrmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmul.t . . 3 · = (+g𝐺)
5 dchrmul.x . . 3 (𝜑𝑋𝐷)
6 dchrmul.y . . 3 (𝜑𝑌𝐷)
71, 2, 3, 4, 5, 6dchrmul 25824 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑋f · 𝑌))
8 mulcl 10621 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98adantl 484 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
10 eqid 2821 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
111, 2, 3, 10, 5dchrf 25818 . . . 4 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
121, 2, 3, 10, 6dchrf 25818 . . . 4 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
13 fvexd 6685 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
14 inidm 4195 . . . 4 ((Base‘𝑍) ∩ (Base‘𝑍)) = (Base‘𝑍)
159, 11, 12, 13, 13, 14off 7424 . . 3 (𝜑 → (𝑋f · 𝑌):(Base‘𝑍)⟶ℂ)
16 eqid 2821 . . . . . . . 8 (Unit‘𝑍) = (Unit‘𝑍)
1710, 16unitcl 19409 . . . . . . 7 (𝑥 ∈ (Unit‘𝑍) → 𝑥 ∈ (Base‘𝑍))
1810, 16unitcl 19409 . . . . . . 7 (𝑦 ∈ (Unit‘𝑍) → 𝑦 ∈ (Base‘𝑍))
1917, 18anim12i 614 . . . . . 6 ((𝑥 ∈ (Unit‘𝑍) ∧ 𝑦 ∈ (Unit‘𝑍)) → (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)))
201, 3dchrrcl 25816 . . . . . . . . . . . . . 14 (𝑋𝐷𝑁 ∈ ℕ)
215, 20syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
221, 2, 10, 16, 21, 3dchrelbas2 25813 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))))
235, 22mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
2423simpld 497 . . . . . . . . . 10 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2821 . . . . . . . . . . . . 13 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2625, 10mgpbas 19245 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
27 eqid 2821 . . . . . . . . . . . . 13 (.r𝑍) = (.r𝑍)
2825, 27mgpplusg 19243 . . . . . . . . . . . 12 (.r𝑍) = (+g‘(mulGrp‘𝑍))
29 eqid 2821 . . . . . . . . . . . . 13 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
30 cnfldmul 20551 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
3129, 30mgpplusg 19243 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘ℂfld))
3226, 28, 31mhmlin 17963 . . . . . . . . . . 11 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
33323expb 1116 . . . . . . . . . 10 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
3424, 33sylan 582 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
351, 2, 10, 16, 21, 3dchrelbas2 25813 . . . . . . . . . . . 12 (𝜑 → (𝑌𝐷 ↔ (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑌𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))))
366, 35mpbid 234 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑌𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
3736simpld 497 . . . . . . . . . 10 (𝜑𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3826, 28, 31mhmlin 17963 . . . . . . . . . . 11 ((𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
39383expb 1116 . . . . . . . . . 10 ((𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
4037, 39sylan 582 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
4134, 40oveq12d 7174 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))) = (((𝑋𝑥) · (𝑋𝑦)) · ((𝑌𝑥) · (𝑌𝑦))))
4211ffvelrnda 6851 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
4342adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋𝑥) ∈ ℂ)
44 simpr 487 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → 𝑦 ∈ (Base‘𝑍))
45 ffvelrn 6849 . . . . . . . . . 10 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑋𝑦) ∈ ℂ)
4611, 44, 45syl2an 597 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋𝑦) ∈ ℂ)
4712ffvelrnda 6851 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑌𝑥) ∈ ℂ)
4847adantrr 715 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌𝑥) ∈ ℂ)
49 ffvelrn 6849 . . . . . . . . . 10 ((𝑌:(Base‘𝑍)⟶ℂ ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑌𝑦) ∈ ℂ)
5012, 44, 49syl2an 597 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌𝑦) ∈ ℂ)
5143, 46, 48, 50mul4d 10852 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (((𝑋𝑥) · (𝑋𝑦)) · ((𝑌𝑥) · (𝑌𝑦))) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
5241, 51eqtrd 2856 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
5311ffnd 6515 . . . . . . . . 9 (𝜑𝑋 Fn (Base‘𝑍))
5453adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑋 Fn (Base‘𝑍))
5512ffnd 6515 . . . . . . . . 9 (𝜑𝑌 Fn (Base‘𝑍))
5655adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑌 Fn (Base‘𝑍))
57 fvexd 6685 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (Base‘𝑍) ∈ V)
5821nnnn0d 11956 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
592zncrng 20691 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
60 crngring 19308 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6158, 59, 603syl 18 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
6210, 27ringcl 19311 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
63623expb 1116 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
6461, 63sylan 582 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
65 fnfvof 7423 . . . . . . . 8 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))))
6654, 56, 57, 64, 65syl22anc 836 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))))
6753adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑋 Fn (Base‘𝑍))
6855adantr 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑌 Fn (Base‘𝑍))
69 fvexd 6685 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (Base‘𝑍) ∈ V)
70 simpr 487 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑥 ∈ (Base‘𝑍))
71 fnfvof 7423 . . . . . . . . . 10 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ 𝑥 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
7267, 68, 69, 70, 71syl22anc 836 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
7372adantrr 715 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
74 simprr 771 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑦 ∈ (Base‘𝑍))
75 fnfvof 7423 . . . . . . . . 9 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑦) = ((𝑋𝑦) · (𝑌𝑦)))
7654, 56, 57, 74, 75syl22anc 836 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑦) = ((𝑋𝑦) · (𝑌𝑦)))
7773, 76oveq12d 7174 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
7852, 66, 773eqtr4d 2866 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
7919, 78sylan2 594 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝑍) ∧ 𝑦 ∈ (Unit‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
8079ralrimivva 3191 . . . 4 (𝜑 → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
81 eqid 2821 . . . . . . . 8 (1r𝑍) = (1r𝑍)
8210, 81ringidcl 19318 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ (Base‘𝑍))
8361, 82syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ (Base‘𝑍))
84 fnfvof 7423 . . . . . 6 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ (1r𝑍) ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(1r𝑍)) = ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))))
8553, 55, 13, 83, 84syl22anc 836 . . . . 5 (𝜑 → ((𝑋f · 𝑌)‘(1r𝑍)) = ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))))
8625, 81ringidval 19253 . . . . . . . . 9 (1r𝑍) = (0g‘(mulGrp‘𝑍))
87 cnfld1 20570 . . . . . . . . . 10 1 = (1r‘ℂfld)
8829, 87ringidval 19253 . . . . . . . . 9 1 = (0g‘(mulGrp‘ℂfld))
8986, 88mhm0 17964 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9024, 89syl 17 . . . . . . 7 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9186, 88mhm0 17964 . . . . . . . 8 (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑌‘(1r𝑍)) = 1)
9237, 91syl 17 . . . . . . 7 (𝜑 → (𝑌‘(1r𝑍)) = 1)
9390, 92oveq12d 7174 . . . . . 6 (𝜑 → ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))) = (1 · 1))
94 1t1e1 11800 . . . . . 6 (1 · 1) = 1
9593, 94syl6eq 2872 . . . . 5 (𝜑 → ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))) = 1)
9685, 95eqtrd 2856 . . . 4 (𝜑 → ((𝑋f · 𝑌)‘(1r𝑍)) = 1)
9772neeq1d 3075 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 ↔ ((𝑋𝑥) · (𝑌𝑥)) ≠ 0))
9842, 47mulne0bd 11291 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0) ↔ ((𝑋𝑥) · (𝑌𝑥)) ≠ 0))
9997, 98bitr4d 284 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 ↔ ((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0)))
10023simprd 498 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
101100r19.21bi 3208 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
102101adantrd 494 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍)))
10399, 102sylbid 242 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
104103ralrimiva 3182 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10580, 96, 1043jca 1124 . . 3 (𝜑 → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) ∧ ((𝑋f · 𝑌)‘(1r𝑍)) = 1 ∧ ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
1061, 2, 10, 16, 21, 3dchrelbas3 25814 . . 3 (𝜑 → ((𝑋f · 𝑌) ∈ 𝐷 ↔ ((𝑋f · 𝑌):(Base‘𝑍)⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) ∧ ((𝑋f · 𝑌)‘(1r𝑍)) = 1 ∧ ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10715, 105, 106mpbir2and 711 . 2 (𝜑 → (𝑋f · 𝑌) ∈ 𝐷)
1087, 107eqeltrd 2913 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537  1c1 10538   · cmul 10542  cn 11638  0cn0 11898  Basecbs 16483  +gcplusg 16565  .rcmulr 16566   MndHom cmhm 17954  mulGrpcmgp 19239  1rcur 19251  Ringcrg 19297  CRingccrg 19298  Unitcui 19389  fldccnfld 20545  ℤ/nczn 20650  DChrcdchr 25808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-nsg 18277  df-eqg 18278  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-cnfld 20546  df-zring 20618  df-zn 20654  df-dchr 25809
This theorem is referenced by:  dchrabl  25830  dchrinv  25837
  Copyright terms: Public domain W3C validator