MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrmulcl Structured version   Visualization version   GIF version

Theorem dchrmulcl 25945
Description: Closure of the group operation on Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrmhm.g 𝐺 = (DChr‘𝑁)
dchrmhm.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrmhm.b 𝐷 = (Base‘𝐺)
dchrmul.t · = (+g𝐺)
dchrmul.x (𝜑𝑋𝐷)
dchrmul.y (𝜑𝑌𝐷)
Assertion
Ref Expression
dchrmulcl (𝜑 → (𝑋 · 𝑌) ∈ 𝐷)

Proof of Theorem dchrmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrmhm.g . . 3 𝐺 = (DChr‘𝑁)
2 dchrmhm.z . . 3 𝑍 = (ℤ/nℤ‘𝑁)
3 dchrmhm.b . . 3 𝐷 = (Base‘𝐺)
4 dchrmul.t . . 3 · = (+g𝐺)
5 dchrmul.x . . 3 (𝜑𝑋𝐷)
6 dchrmul.y . . 3 (𝜑𝑌𝐷)
71, 2, 3, 4, 5, 6dchrmul 25944 . 2 (𝜑 → (𝑋 · 𝑌) = (𝑋f · 𝑌))
8 mulcl 10672 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
98adantl 485 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
10 eqid 2758 . . . . 5 (Base‘𝑍) = (Base‘𝑍)
111, 2, 3, 10, 5dchrf 25938 . . . 4 (𝜑𝑋:(Base‘𝑍)⟶ℂ)
121, 2, 3, 10, 6dchrf 25938 . . . 4 (𝜑𝑌:(Base‘𝑍)⟶ℂ)
13 fvexd 6678 . . . 4 (𝜑 → (Base‘𝑍) ∈ V)
14 inidm 4125 . . . 4 ((Base‘𝑍) ∩ (Base‘𝑍)) = (Base‘𝑍)
159, 11, 12, 13, 13, 14off 7428 . . 3 (𝜑 → (𝑋f · 𝑌):(Base‘𝑍)⟶ℂ)
16 eqid 2758 . . . . . . . 8 (Unit‘𝑍) = (Unit‘𝑍)
1710, 16unitcl 19493 . . . . . . 7 (𝑥 ∈ (Unit‘𝑍) → 𝑥 ∈ (Base‘𝑍))
1810, 16unitcl 19493 . . . . . . 7 (𝑦 ∈ (Unit‘𝑍) → 𝑦 ∈ (Base‘𝑍))
1917, 18anim12i 615 . . . . . 6 ((𝑥 ∈ (Unit‘𝑍) ∧ 𝑦 ∈ (Unit‘𝑍)) → (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)))
201, 3dchrrcl 25936 . . . . . . . . . . . . . 14 (𝑋𝐷𝑁 ∈ ℕ)
215, 20syl 17 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℕ)
221, 2, 10, 16, 21, 3dchrelbas2 25933 . . . . . . . . . . . 12 (𝜑 → (𝑋𝐷 ↔ (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))))
235, 22mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
2423simpld 498 . . . . . . . . . 10 (𝜑𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
25 eqid 2758 . . . . . . . . . . . . 13 (mulGrp‘𝑍) = (mulGrp‘𝑍)
2625, 10mgpbas 19326 . . . . . . . . . . . 12 (Base‘𝑍) = (Base‘(mulGrp‘𝑍))
27 eqid 2758 . . . . . . . . . . . . 13 (.r𝑍) = (.r𝑍)
2825, 27mgpplusg 19324 . . . . . . . . . . . 12 (.r𝑍) = (+g‘(mulGrp‘𝑍))
29 eqid 2758 . . . . . . . . . . . . 13 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
30 cnfldmul 20185 . . . . . . . . . . . . 13 · = (.r‘ℂfld)
3129, 30mgpplusg 19324 . . . . . . . . . . . 12 · = (+g‘(mulGrp‘ℂfld))
3226, 28, 31mhmlin 18042 . . . . . . . . . . 11 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
33323expb 1117 . . . . . . . . . 10 ((𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
3424, 33sylan 583 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋‘(𝑥(.r𝑍)𝑦)) = ((𝑋𝑥) · (𝑋𝑦)))
351, 2, 10, 16, 21, 3dchrelbas2 25933 . . . . . . . . . . . 12 (𝜑 → (𝑌𝐷 ↔ (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑌𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))))
366, 35mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ ∀𝑥 ∈ (Base‘𝑍)((𝑌𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
3736simpld 498 . . . . . . . . . 10 (𝜑𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)))
3826, 28, 31mhmlin 18042 . . . . . . . . . . 11 ((𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
39383expb 1117 . . . . . . . . . 10 ((𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
4037, 39sylan 583 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌‘(𝑥(.r𝑍)𝑦)) = ((𝑌𝑥) · (𝑌𝑦)))
4134, 40oveq12d 7174 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))) = (((𝑋𝑥) · (𝑋𝑦)) · ((𝑌𝑥) · (𝑌𝑦))))
4211ffvelrnda 6848 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑋𝑥) ∈ ℂ)
4342adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋𝑥) ∈ ℂ)
44 simpr 488 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → 𝑦 ∈ (Base‘𝑍))
45 ffvelrn 6846 . . . . . . . . . 10 ((𝑋:(Base‘𝑍)⟶ℂ ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑋𝑦) ∈ ℂ)
4611, 44, 45syl2an 598 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑋𝑦) ∈ ℂ)
4712ffvelrnda 6848 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (𝑌𝑥) ∈ ℂ)
4847adantrr 716 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌𝑥) ∈ ℂ)
49 ffvelrn 6846 . . . . . . . . . 10 ((𝑌:(Base‘𝑍)⟶ℂ ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑌𝑦) ∈ ℂ)
5012, 44, 49syl2an 598 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑌𝑦) ∈ ℂ)
5143, 46, 48, 50mul4d 10903 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (((𝑋𝑥) · (𝑋𝑦)) · ((𝑌𝑥) · (𝑌𝑦))) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
5241, 51eqtrd 2793 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
5311ffnd 6504 . . . . . . . . 9 (𝜑𝑋 Fn (Base‘𝑍))
5453adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑋 Fn (Base‘𝑍))
5512ffnd 6504 . . . . . . . . 9 (𝜑𝑌 Fn (Base‘𝑍))
5655adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑌 Fn (Base‘𝑍))
57 fvexd 6678 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (Base‘𝑍) ∈ V)
5821nnnn0d 12007 . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
592zncrng 20325 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑍 ∈ CRing)
60 crngring 19390 . . . . . . . . . 10 (𝑍 ∈ CRing → 𝑍 ∈ Ring)
6158, 59, 603syl 18 . . . . . . . . 9 (𝜑𝑍 ∈ Ring)
6210, 27ringcl 19395 . . . . . . . . . 10 ((𝑍 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍)) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
63623expb 1117 . . . . . . . . 9 ((𝑍 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
6461, 63sylan 583 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))
65 fnfvof 7427 . . . . . . . 8 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ (𝑥(.r𝑍)𝑦) ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))))
6654, 56, 57, 64, 65syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = ((𝑋‘(𝑥(.r𝑍)𝑦)) · (𝑌‘(𝑥(.r𝑍)𝑦))))
6753adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑋 Fn (Base‘𝑍))
6855adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑌 Fn (Base‘𝑍))
69 fvexd 6678 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → (Base‘𝑍) ∈ V)
70 simpr 488 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑍)) → 𝑥 ∈ (Base‘𝑍))
71 fnfvof 7427 . . . . . . . . . 10 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ 𝑥 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
7267, 68, 69, 70, 71syl22anc 837 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
7372adantrr 716 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑥) = ((𝑋𝑥) · (𝑌𝑥)))
74 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → 𝑦 ∈ (Base‘𝑍))
75 fnfvof 7427 . . . . . . . . 9 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑦) = ((𝑋𝑦) · (𝑌𝑦)))
7654, 56, 57, 74, 75syl22anc 837 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘𝑦) = ((𝑋𝑦) · (𝑌𝑦)))
7773, 76oveq12d 7174 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) = (((𝑋𝑥) · (𝑌𝑥)) · ((𝑋𝑦) · (𝑌𝑦))))
7852, 66, 773eqtr4d 2803 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑍) ∧ 𝑦 ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
7919, 78sylan2 595 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Unit‘𝑍) ∧ 𝑦 ∈ (Unit‘𝑍))) → ((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
8079ralrimivva 3120 . . . 4 (𝜑 → ∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)))
81 eqid 2758 . . . . . . . 8 (1r𝑍) = (1r𝑍)
8210, 81ringidcl 19402 . . . . . . 7 (𝑍 ∈ Ring → (1r𝑍) ∈ (Base‘𝑍))
8361, 82syl 17 . . . . . 6 (𝜑 → (1r𝑍) ∈ (Base‘𝑍))
84 fnfvof 7427 . . . . . 6 (((𝑋 Fn (Base‘𝑍) ∧ 𝑌 Fn (Base‘𝑍)) ∧ ((Base‘𝑍) ∈ V ∧ (1r𝑍) ∈ (Base‘𝑍))) → ((𝑋f · 𝑌)‘(1r𝑍)) = ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))))
8553, 55, 13, 83, 84syl22anc 837 . . . . 5 (𝜑 → ((𝑋f · 𝑌)‘(1r𝑍)) = ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))))
8625, 81ringidval 19334 . . . . . . . . 9 (1r𝑍) = (0g‘(mulGrp‘𝑍))
87 cnfld1 20204 . . . . . . . . . 10 1 = (1r‘ℂfld)
8829, 87ringidval 19334 . . . . . . . . 9 1 = (0g‘(mulGrp‘ℂfld))
8986, 88mhm0 18043 . . . . . . . 8 (𝑋 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑋‘(1r𝑍)) = 1)
9024, 89syl 17 . . . . . . 7 (𝜑 → (𝑋‘(1r𝑍)) = 1)
9186, 88mhm0 18043 . . . . . . . 8 (𝑌 ∈ ((mulGrp‘𝑍) MndHom (mulGrp‘ℂfld)) → (𝑌‘(1r𝑍)) = 1)
9237, 91syl 17 . . . . . . 7 (𝜑 → (𝑌‘(1r𝑍)) = 1)
9390, 92oveq12d 7174 . . . . . 6 (𝜑 → ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))) = (1 · 1))
94 1t1e1 11849 . . . . . 6 (1 · 1) = 1
9593, 94eqtrdi 2809 . . . . 5 (𝜑 → ((𝑋‘(1r𝑍)) · (𝑌‘(1r𝑍))) = 1)
9685, 95eqtrd 2793 . . . 4 (𝜑 → ((𝑋f · 𝑌)‘(1r𝑍)) = 1)
9772neeq1d 3010 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 ↔ ((𝑋𝑥) · (𝑌𝑥)) ≠ 0))
9842, 47mulne0bd 11342 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0) ↔ ((𝑋𝑥) · (𝑌𝑥)) ≠ 0))
9997, 98bitr4d 285 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 ↔ ((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0)))
10023simprd 499 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
101100r19.21bi 3137 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝑍)) → ((𝑋𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
102101adantrd 495 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋𝑥) ≠ 0 ∧ (𝑌𝑥) ≠ 0) → 𝑥 ∈ (Unit‘𝑍)))
10399, 102sylbid 243 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑍)) → (((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
104103ralrimiva 3113 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍)))
10580, 96, 1043jca 1125 . . 3 (𝜑 → (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) ∧ ((𝑋f · 𝑌)‘(1r𝑍)) = 1 ∧ ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))
1061, 2, 10, 16, 21, 3dchrelbas3 25934 . . 3 (𝜑 → ((𝑋f · 𝑌) ∈ 𝐷 ↔ ((𝑋f · 𝑌):(Base‘𝑍)⟶ℂ ∧ (∀𝑥 ∈ (Unit‘𝑍)∀𝑦 ∈ (Unit‘𝑍)((𝑋f · 𝑌)‘(𝑥(.r𝑍)𝑦)) = (((𝑋f · 𝑌)‘𝑥) · ((𝑋f · 𝑌)‘𝑦)) ∧ ((𝑋f · 𝑌)‘(1r𝑍)) = 1 ∧ ∀𝑥 ∈ (Base‘𝑍)(((𝑋f · 𝑌)‘𝑥) ≠ 0 → 𝑥 ∈ (Unit‘𝑍))))))
10715, 105, 106mpbir2and 712 . 2 (𝜑 → (𝑋f · 𝑌) ∈ 𝐷)
1087, 107eqeltrd 2852 1 (𝜑 → (𝑋 · 𝑌) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  Vcvv 3409   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7156  f cof 7409  cc 10586  0cc0 10588  1c1 10589   · cmul 10593  cn 11687  0cn0 11947  Basecbs 16554  +gcplusg 16636  .rcmulr 16637   MndHom cmhm 18033  mulGrpcmgp 19320  1rcur 19332  Ringcrg 19378  CRingccrg 19379  Unitcui 19473  fldccnfld 20179  ℤ/nczn 20285  DChrcdchr 25928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-ec 8307  df-qs 8311  df-map 8424  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-sup 8952  df-inf 8953  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-0g 16786  df-imas 16852  df-qus 16853  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-grp 18185  df-minusg 18186  df-sbg 18187  df-subg 18356  df-nsg 18357  df-eqg 18358  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-cring 19381  df-oppr 19457  df-dvdsr 19475  df-unit 19476  df-subrg 19614  df-lmod 19717  df-lss 19785  df-lsp 19825  df-sra 20025  df-rgmod 20026  df-lidl 20027  df-rsp 20028  df-2idl 20086  df-cnfld 20180  df-zring 20252  df-zn 20289  df-dchr 25929
This theorem is referenced by:  dchrabl  25950  dchrinv  25957
  Copyright terms: Public domain W3C validator