MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd2 Structured version   Visualization version   GIF version

Theorem odadd2 19037
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd2 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))

Proof of Theorem odadd2
StepHypRef Expression
1 odadd1.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
31, 2odcl 18731 . . . . . . . 8 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1131 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
54nn0zd 12124 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
61, 2odcl 18731 . . . . . . . 8 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
763ad2ant3 1132 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
87nn0zd 12124 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
95, 8zmulcld 12132 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
109adantr 484 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
11 dvds0 15673 . . . 4 (((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
1210, 11syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
13 simpr 488 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) gcd (𝑂𝐵)) = 0)
1413sq0id 13607 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 0)
1514oveq2d 7166 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 0))
16 ablgrp 18978 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
17 odadd1.3 . . . . . . . . . . 11 + = (+g𝐺)
181, 17grpcl 18177 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
1916, 18syl3an1 1160 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
201, 2odcl 18731 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2221nn0zd 12124 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2322adantr 484 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2423zcnd 12127 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2524mul01d 10877 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · 0) = 0)
2615, 25eqtrd 2793 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = 0)
2712, 26breqtrrd 5060 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
285adantr 484 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
298adantr 484 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
3028, 29gcdcld 15907 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
3130nn0cnd 11996 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
3231sqvald 13557 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
3332oveq2d 7166 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
34 gcddvds 15902 . . . . . . . . 9 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3528, 29, 34syl2anc 587 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 498 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3730nn0zd 12124 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 simpr 488 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
39 dvdsval2 15658 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4037, 38, 28, 39syl3anc 1368 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4136, 40mpbid 235 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4241zcnd 12127 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4335simprd 499 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
44 dvdsval2 15658 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4537, 38, 29, 44syl3anc 1368 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4643, 45mpbid 235 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4746zcnd 12127 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4842, 31, 47, 31mul4d 10890 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
4928zcnd 12127 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5049, 31, 38divcan1d 11455 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐴))
5129zcnd 12127 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5251, 31, 38divcan1d 11455 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐵))
5350, 52oveq12d 7168 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) · (𝑂𝐵)))
5433, 48, 533eqtr2d 2799 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂𝐴) · (𝑂𝐵)))
5522adantr 484 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
56 dvdsmul2 15680 . . . . . . . . . 10 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
5755, 28, 56syl2anc 587 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
58 simpl1 1188 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
5955, 29zmulcld 12132 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ)
60 simpl2 1189 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
61 simpl3 1190 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
62 eqid 2758 . . . . . . . . . . . . . 14 (.g𝐺) = (.g𝐺)
631, 62, 17mulgdi 19015 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
6458, 59, 60, 61, 63syl13anc 1369 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
65 dvdsmul2 15680 . . . . . . . . . . . . . . 15 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6655, 29, 65syl2anc 587 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6758, 16syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
68 eqid 2758 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
691, 2, 62, 68oddvds 18742 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7067, 61, 59, 69syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7166, 70mpbid 235 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺))
7271oveq2d 7166 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
7364, 72eqtrd 2793 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
74 dvdsmul1 15679 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7555, 29, 74syl2anc 587 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7619adantr 484 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
771, 2, 62, 68oddvds 18742 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7867, 76, 59, 77syl3anc 1368 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7975, 78mpbid 235 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
801, 62mulgcl 18312 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
8167, 59, 60, 80syl3anc 1368 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
821, 17, 68grprid 18201 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8367, 81, 82syl2anc 587 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8473, 79, 833eqtr3rd 2802 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺))
851, 2, 62, 68oddvds 18742 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8667, 60, 59, 85syl3anc 1368 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8784, 86mpbird 260 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
8855, 28zmulcld 12132 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ)
89 dvdsgcd 15943 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9028, 88, 59, 89syl3anc 1368 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9157, 87, 90mp2and 698 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
9221adantr 484 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
93 mulgcd 15947 . . . . . . . . 9 (((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9492, 28, 29, 93syl3anc 1368 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9591, 94breqtrd 5058 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9650, 95eqbrtrd 5054 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
97 dvdsmulcr 15687 . . . . . . 7 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9841, 55, 37, 38, 97syl112anc 1371 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9996, 98mpbid 235 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
1001, 62, 17mulgdi 19015 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
10158, 88, 60, 61, 100syl13anc 1369 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
1021, 2, 62, 68oddvds 18742 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10367, 60, 88, 102syl3anc 1368 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10457, 103mpbid 235 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺))
105104oveq1d 7165 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
106101, 105eqtrd 2793 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
107 dvdsmul1 15679 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
10855, 28, 107syl2anc 587 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
1091, 2, 62, 68oddvds 18742 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
11067, 76, 88, 109syl3anc 1368 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
111108, 110mpbid 235 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
1121, 62mulgcl 18312 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐵𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
11367, 88, 61, 112syl3anc 1368 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
1141, 17, 68grplid 18200 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
11567, 113, 114syl2anc 587 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
116106, 111, 1153eqtr3rd 2802 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺))
1171, 2, 62, 68oddvds 18742 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
11867, 61, 88, 117syl3anc 1368 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
119116, 118mpbird 260 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
120 dvdsgcd 15943 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
12129, 88, 59, 120syl3anc 1368 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
122119, 66, 121mp2and 698 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
123122, 94breqtrd 5058 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
12452, 123eqbrtrd 5054 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
125 dvdsmulcr 15687 . . . . . . 7 ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
12646, 55, 37, 38, 125syl112anc 1371 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
127124, 126mpbid 235 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
12841, 46gcdcld 15907 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℕ0)
129128nn0cnd 11996 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℂ)
130 1cnd 10674 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 1 ∈ ℂ)
13131mulid2d 10697 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (1 · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) gcd (𝑂𝐵)))
13250, 52oveq12d 7168 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) gcd (𝑂𝐵)))
133 mulgcdr 15949 . . . . . . . . 9 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
13441, 46, 30, 133syl3anc 1368 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
135131, 132, 1343eqtr2rd 2800 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (1 · ((𝑂𝐴) gcd (𝑂𝐵))))
136129, 130, 31, 38, 135mulcan2ad 11314 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1)
137 coprmdvds2 16050 . . . . . 6 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ) ∧ (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13841, 46, 55, 136, 137syl31anc 1370 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13999, 127, 138mp2and 698 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)))
14041, 46zmulcld 12132 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ)
141 zsqcl 13544 . . . . . 6 (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
14237, 141syl 17 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
143 dvdsmulc 15685 . . . . 5 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
144140, 55, 142, 143syl3anc 1368 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
145139, 144mpd 15 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14654, 145eqbrtrrd 5056 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14727, 146pm2.61dane 3038 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951   class class class wbr 5032  cfv 6335  (class class class)co 7150  0cc0 10575  1c1 10576   · cmul 10580   / cdiv 11335  2c2 11729  0cn0 11934  cz 12020  cexp 13479  cdvds 15655   gcd cgcd 15893  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Grpcgrp 18169  .gcmg 18291  odcod 18719  Abelcabl 18974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-inf 8940  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-div 11336  df-nn 11675  df-2 11737  df-3 11738  df-n0 11935  df-z 12021  df-uz 12283  df-rp 12431  df-fz 12940  df-fzo 13083  df-fl 13211  df-mod 13287  df-seq 13419  df-exp 13480  df-cj 14506  df-re 14507  df-im 14508  df-sqrt 14642  df-abs 14643  df-dvds 15656  df-gcd 15894  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173  df-sbg 18174  df-mulg 18292  df-od 18723  df-cmn 18975  df-abl 18976
This theorem is referenced by:  odadd  19038
  Copyright terms: Public domain W3C validator