MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd2 Structured version   Visualization version   GIF version

Theorem odadd2 19627
Description: The order of a product in an abelian group is divisible by the LCM of the orders of the factors divided by the GCD. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd2 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))

Proof of Theorem odadd2
StepHypRef Expression
1 odadd1.2 . . . . . . . . 9 𝑋 = (Base‘𝐺)
2 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
31, 2odcl 19318 . . . . . . . 8 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
433ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
54nn0zd 12525 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
61, 2odcl 19318 . . . . . . . 8 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
763ad2ant3 1135 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
87nn0zd 12525 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
95, 8zmulcld 12613 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
109adantr 481 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
11 dvds0 16154 . . . 4 (((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
1210, 11syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ 0)
13 simpr 485 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) gcd (𝑂𝐵)) = 0)
1413sq0id 14098 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = 0)
1514oveq2d 7373 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂‘(𝐴 + 𝐵)) · 0))
16 ablgrp 19567 . . . . . . . . . 10 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
17 odadd1.3 . . . . . . . . . . 11 + = (+g𝐺)
181, 17grpcl 18756 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
1916, 18syl3an1 1163 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
201, 2odcl 19318 . . . . . . . . 9 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2119, 20syl 17 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
2221nn0zd 12525 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2322adantr 481 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
2423zcnd 12608 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℂ)
2524mul01d 11354 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · 0) = 0)
2615, 25eqtrd 2776 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = 0)
2712, 26breqtrrd 5133 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
285adantr 481 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
298adantr 481 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
3028, 29gcdcld 16388 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
3130nn0cnd 12475 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
3231sqvald 14048 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) = (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
3332oveq2d 7373 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
34 gcddvds 16383 . . . . . . . . 9 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3528, 29, 34syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3635simpld 495 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3730nn0zd 12525 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
38 simpr 485 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
39 dvdsval2 16139 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4037, 38, 28, 39syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4136, 40mpbid 231 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4241zcnd 12608 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4335simprd 496 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
44 dvdsval2 16139 . . . . . . . 8 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4537, 38, 29, 44syl3anc 1371 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4643, 45mpbid 231 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
4746zcnd 12608 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℂ)
4842, 31, 47, 31mul4d 11367 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵)))))
4928zcnd 12608 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5049, 31, 38divcan1d 11932 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐴))
5129zcnd 12608 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5251, 31, 38divcan1d 11932 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (𝑂𝐵))
5350, 52oveq12d 7375 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) · (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) · (𝑂𝐵)))
5433, 48, 533eqtr2d 2782 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) = ((𝑂𝐴) · (𝑂𝐵)))
5522adantr 481 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
56 dvdsmul2 16161 . . . . . . . . . 10 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
5755, 28, 56syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
58 simpl1 1191 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
5955, 29zmulcld 12613 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ)
60 simpl2 1192 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
61 simpl3 1193 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
62 eqid 2736 . . . . . . . . . . . . . 14 (.g𝐺) = (.g𝐺)
631, 62, 17mulgdi 19605 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
6458, 59, 60, 61, 63syl13anc 1372 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)))
65 dvdsmul2 16161 . . . . . . . . . . . . . . 15 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6655, 29, 65syl2anc 584 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
6758, 16syl 17 . . . . . . . . . . . . . . 15 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
68 eqid 2736 . . . . . . . . . . . . . . . 16 (0g𝐺) = (0g𝐺)
691, 2, 62, 68oddvds 19329 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7067, 61, 59, 69syl3anc 1371 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺)))
7166, 70mpbid 231 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵) = (0g𝐺))
7271oveq2d 7373 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
7364, 72eqtrd 2776 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)))
74 dvdsmul1 16160 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7555, 29, 74syl2anc 584 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
7619adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
771, 2, 62, 68oddvds 19329 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7867, 76, 59, 77syl3anc 1371 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
7975, 78mpbid 231 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
801, 62mulgcl 18893 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ ∧ 𝐴𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
8167, 59, 60, 80syl3anc 1371 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋)
821, 17, 68grprid 18781 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) ∈ 𝑋) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8367, 81, 82syl2anc 584 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) + (0g𝐺)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴))
8473, 79, 833eqtr3rd 2785 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺))
851, 2, 62, 68oddvds 19329 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8667, 60, 59, 85syl3anc 1371 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))(.g𝐺)𝐴) = (0g𝐺)))
8784, 86mpbird 256 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))
8855, 28zmulcld 12613 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ)
89 dvdsgcd 16425 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9028, 88, 59, 89syl3anc 1371 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
9157, 87, 90mp2and 697 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
9221adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
93 mulgcd 16429 . . . . . . . . 9 (((𝑂‘(𝐴 + 𝐵)) ∈ ℕ0 ∧ (𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9492, 28, 29, 93syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) = ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9591, 94breqtrd 5131 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
9650, 95eqbrtrd 5127 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
97 dvdsmulcr 16168 . . . . . . 7 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9841, 55, 37, 38, 97syl112anc 1374 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
9996, 98mpbid 231 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
1001, 62, 17mulgdi 19605 . . . . . . . . . . . . 13 ((𝐺 ∈ Abel ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
10158, 88, 60, 61, 100syl13anc 1372 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
1021, 2, 62, 68oddvds 19329 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10367, 60, 88, 102syl3anc 1371 . . . . . . . . . . . . . 14 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺)))
10457, 103mpbid 231 . . . . . . . . . . . . 13 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) = (0g𝐺))
105104oveq1d 7372 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐴) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
106101, 105eqtrd 2776 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)))
107 dvdsmul1 16160 . . . . . . . . . . . . 13 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
10855, 28, 107syl2anc 584 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
1091, 2, 62, 68oddvds 19329 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
11067, 76, 88, 109syl3anc 1371 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
111108, 110mpbid 231 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
1121, 62mulgcl 18893 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ 𝐵𝑋) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
11367, 88, 61, 112syl3anc 1371 . . . . . . . . . . . 12 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋)
1141, 17, 68grplid 18780 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) ∈ 𝑋) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
11567, 113, 114syl2anc 584 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵)) = (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵))
116106, 111, 1153eqtr3rd 2785 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺))
1171, 2, 62, 68oddvds 19329 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
11867, 61, 88, 117syl3anc 1371 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ↔ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴))(.g𝐺)𝐵) = (0g𝐺)))
119116, 118mpbird 256 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)))
120 dvdsgcd 16425 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∈ ℤ ∧ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
12129, 88, 59, 120syl3anc 1371 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) ∧ (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵)))))
122119, 66, 121mp2and 697 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐴)) gcd ((𝑂‘(𝐴 + 𝐵)) · (𝑂𝐵))))
123122, 94breqtrd 5131 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
12452, 123eqbrtrd 5127 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))))
125 dvdsmulcr 16168 . . . . . . 7 ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
12646, 55, 37, 38, 125syl112anc 1374 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))))
127124, 126mpbid 231 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)))
12841, 46gcdcld 16388 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℕ0)
129128nn0cnd 12475 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℂ)
130 1cnd 11150 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 1 ∈ ℂ)
13131mulid2d 11173 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (1 · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) gcd (𝑂𝐵)))
13250, 52oveq12d 7375 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((𝑂𝐴) gcd (𝑂𝐵)))
133 mulgcdr 16431 . . . . . . . . 9 ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
13441, 46, 30, 133syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) gcd (((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵)))) = ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))))
135131, 132, 1343eqtr2rd 2783 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · ((𝑂𝐴) gcd (𝑂𝐵))) = (1 · ((𝑂𝐴) gcd (𝑂𝐵))))
136129, 130, 31, 38, 135mulcan2ad 11791 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1)
137 coprmdvds2 16530 . . . . . 6 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ) ∧ (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) gcd ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) = 1) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13841, 46, 55, 136, 137syl31anc 1373 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵)) ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∥ (𝑂‘(𝐴 + 𝐵))) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵))))
13999, 127, 138mp2and 697 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)))
14041, 46zmulcld 12613 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ)
141 zsqcl 14034 . . . . . 6 (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
14237, 141syl 17 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ)
143 dvdsmulc 16166 . . . . 5 (((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∈ ℤ ∧ (𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵))↑2) ∈ ℤ) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
144140, 55, 142, 143syl3anc 1371 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) ∥ (𝑂‘(𝐴 + 𝐵)) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2))))
145139, 144mpd 15 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14654, 145eqbrtrrd 5129 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
14727, 146pm2.61dane 3032 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) · (𝑂𝐵)) ∥ ((𝑂‘(𝐴 + 𝐵)) · (((𝑂𝐴) gcd (𝑂𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   · cmul 11056   / cdiv 11812  2c2 12208  0cn0 12413  cz 12499  cexp 13967  cdvds 16136   gcd cgcd 16374  Basecbs 17083  +gcplusg 17133  0gc0g 17321  Grpcgrp 18748  .gcmg 18872  odcod 19306  Abelcabl 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-od 19310  df-cmn 19564  df-abl 19565
This theorem is referenced by:  odadd  19628
  Copyright terms: Public domain W3C validator