| Step | Hyp | Ref
| Expression |
| 1 | | madjusmdet.b |
. . 3
⊢ 𝐵 = (Base‘𝐴) |
| 2 | | madjusmdet.a |
. . 3
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
| 3 | | madjusmdet.d |
. . 3
⊢ 𝐷 = ((1...𝑁) maDet 𝑅) |
| 4 | | madjusmdet.k |
. . 3
⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) |
| 5 | | madjusmdet.t |
. . 3
⊢ · =
(.r‘𝑅) |
| 6 | | madjusmdet.z |
. . 3
⊢ 𝑍 = (ℤRHom‘𝑅) |
| 7 | | madjusmdet.e |
. . 3
⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) |
| 8 | | madjusmdet.n |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 9 | | madjusmdet.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 10 | | madjusmdet.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
| 11 | | madjusmdet.j |
. . 3
⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
| 12 | | madjusmdet.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| 13 | | eqid 2737 |
. . 3
⊢
(Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁))) |
| 14 | | eqid 2737 |
. . 3
⊢
(pmSgn‘(1...𝑁)) = (pmSgn‘(1...𝑁)) |
| 15 | | eqid 2737 |
. . 3
⊢ (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) |
| 16 | | fveq2 6906 |
. . . . 5
⊢ (𝑘 = 𝑖 → ((𝑃 ∘ ◡𝑆)‘𝑘) = ((𝑃 ∘ ◡𝑆)‘𝑖)) |
| 17 | 16 | oveq1d 7446 |
. . . 4
⊢ (𝑘 = 𝑖 → (((𝑃 ∘ ◡𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑙)) = (((𝑃 ∘ ◡𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑙))) |
| 18 | | fveq2 6906 |
. . . . 5
⊢ (𝑙 = 𝑗 → ((𝑄 ∘ ◡𝑇)‘𝑙) = ((𝑄 ∘ ◡𝑇)‘𝑗)) |
| 19 | 18 | oveq2d 7447 |
. . . 4
⊢ (𝑙 = 𝑗 → (((𝑃 ∘ ◡𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑙)) = (((𝑃 ∘ ◡𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑗))) |
| 20 | 17, 19 | cbvmpov 7528 |
. . 3
⊢ (𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑙))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑗))) |
| 21 | | eqid 2737 |
. . . . . 6
⊢
(1...𝑁) = (1...𝑁) |
| 22 | | madjusmdetlem2.p |
. . . . . 6
⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
| 23 | | eqid 2737 |
. . . . . 6
⊢
(SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁)) |
| 24 | 21, 22, 23, 13 | fzto1st 33123 |
. . . . 5
⊢ (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 25 | 10, 24 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 26 | | nnuz 12921 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 27 | 8, 26 | eleqtrdi 2851 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 28 | | eluzfz2 13572 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) |
| 29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
| 30 | | madjusmdetlem2.s |
. . . . . . . 8
⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
| 31 | 21, 30, 23, 13 | fzto1st 33123 |
. . . . . . 7
⊢ (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 32 | 29, 31 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 33 | | eqid 2737 |
. . . . . . 7
⊢
(invg‘(SymGrp‘(1...𝑁))) =
(invg‘(SymGrp‘(1...𝑁))) |
| 34 | 23, 13, 33 | symginv 19420 |
. . . . . 6
⊢ (𝑆 ∈
(Base‘(SymGrp‘(1...𝑁))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = ◡𝑆) |
| 35 | 32, 34 | syl 17 |
. . . . 5
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = ◡𝑆) |
| 36 | | fzfid 14014 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
| 37 | 23 | symggrp 19418 |
. . . . . . 7
⊢
((1...𝑁) ∈ Fin
→ (SymGrp‘(1...𝑁)) ∈ Grp) |
| 38 | 36, 37 | syl 17 |
. . . . . 6
⊢ (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp) |
| 39 | 13, 33 | grpinvcl 19005 |
. . . . . 6
⊢
(((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 40 | 38, 32, 39 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 41 | 35, 40 | eqeltrrd 2842 |
. . . 4
⊢ (𝜑 → ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 42 | | eqid 2737 |
. . . . . 6
⊢
(+g‘(SymGrp‘(1...𝑁))) =
(+g‘(SymGrp‘(1...𝑁))) |
| 43 | 23, 13, 42 | symgov 19401 |
. . . . 5
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))◡𝑆) = (𝑃 ∘ ◡𝑆)) |
| 44 | 23, 13, 42 | symgcl 19402 |
. . . . 5
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))◡𝑆) ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 45 | 43, 44 | eqeltrrd 2842 |
. . . 4
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 46 | 25, 41, 45 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 47 | | madjusmdetlem4.q |
. . . . . 6
⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) |
| 48 | 21, 47, 23, 13 | fzto1st 33123 |
. . . . 5
⊢ (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 49 | 11, 48 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 50 | | madjusmdetlem4.t |
. . . . . . . 8
⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) |
| 51 | 21, 50, 23, 13 | fzto1st 33123 |
. . . . . . 7
⊢ (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 52 | 29, 51 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 53 | 23, 13, 33 | symginv 19420 |
. . . . . 6
⊢ (𝑇 ∈
(Base‘(SymGrp‘(1...𝑁))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = ◡𝑇) |
| 54 | 52, 53 | syl 17 |
. . . . 5
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = ◡𝑇) |
| 55 | 13, 33 | grpinvcl 19005 |
. . . . . 6
⊢
(((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 56 | 38, 52, 55 | syl2anc 584 |
. . . . 5
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 57 | 54, 56 | eqeltrrd 2842 |
. . . 4
⊢ (𝜑 → ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 58 | 23, 13, 42 | symgov 19401 |
. . . . 5
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))◡𝑇) = (𝑄 ∘ ◡𝑇)) |
| 59 | 23, 13, 42 | symgcl 19402 |
. . . . 5
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))◡𝑇) ∈ (Base‘(SymGrp‘(1...𝑁)))) |
| 60 | 58, 59 | eqeltrrd 2842 |
. . . 4
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 61 | 49, 57, 60 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
| 62 | 23, 13 | symgbasf1o 19392 |
. . . . . . 7
⊢ (𝑆 ∈
(Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 63 | 32, 62 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 64 | | f1of1 6847 |
. . . . . 6
⊢ (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1→(1...𝑁)) |
| 65 | | df-f1 6566 |
. . . . . . 7
⊢ (𝑆:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑆:(1...𝑁)⟶(1...𝑁) ∧ Fun ◡𝑆)) |
| 66 | 65 | simprbi 496 |
. . . . . 6
⊢ (𝑆:(1...𝑁)–1-1→(1...𝑁) → Fun ◡𝑆) |
| 67 | 63, 64, 66 | 3syl 18 |
. . . . 5
⊢ (𝜑 → Fun ◡𝑆) |
| 68 | | f1ocnv 6860 |
. . . . . . 7
⊢ (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → ◡𝑆:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 69 | | f1odm 6852 |
. . . . . . 7
⊢ (◡𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom ◡𝑆 = (1...𝑁)) |
| 70 | 63, 68, 69 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → dom ◡𝑆 = (1...𝑁)) |
| 71 | 29, 70 | eleqtrrd 2844 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ dom ◡𝑆) |
| 72 | | fvco 7007 |
. . . . 5
⊢ ((Fun
◡𝑆 ∧ 𝑁 ∈ dom ◡𝑆) → ((𝑃 ∘ ◡𝑆)‘𝑁) = (𝑃‘(◡𝑆‘𝑁))) |
| 73 | 67, 71, 72 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑃 ∘ ◡𝑆)‘𝑁) = (𝑃‘(◡𝑆‘𝑁))) |
| 74 | 21, 30, 23, 13 | fzto1stinvn 33124 |
. . . . . 6
⊢ (𝑁 ∈ (1...𝑁) → (◡𝑆‘𝑁) = 1) |
| 75 | 29, 74 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡𝑆‘𝑁) = 1) |
| 76 | 75 | fveq2d 6910 |
. . . 4
⊢ (𝜑 → (𝑃‘(◡𝑆‘𝑁)) = (𝑃‘1)) |
| 77 | 21, 22 | fzto1stfv1 33121 |
. . . . 5
⊢ (𝐼 ∈ (1...𝑁) → (𝑃‘1) = 𝐼) |
| 78 | 10, 77 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑃‘1) = 𝐼) |
| 79 | 73, 76, 78 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 → ((𝑃 ∘ ◡𝑆)‘𝑁) = 𝐼) |
| 80 | 23, 13 | symgbasf1o 19392 |
. . . . . . 7
⊢ (𝑇 ∈
(Base‘(SymGrp‘(1...𝑁))) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 81 | 52, 80 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 82 | | f1of1 6847 |
. . . . . 6
⊢ (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1→(1...𝑁)) |
| 83 | | df-f1 6566 |
. . . . . . 7
⊢ (𝑇:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑇:(1...𝑁)⟶(1...𝑁) ∧ Fun ◡𝑇)) |
| 84 | 83 | simprbi 496 |
. . . . . 6
⊢ (𝑇:(1...𝑁)–1-1→(1...𝑁) → Fun ◡𝑇) |
| 85 | 81, 82, 84 | 3syl 18 |
. . . . 5
⊢ (𝜑 → Fun ◡𝑇) |
| 86 | | f1ocnv 6860 |
. . . . . . 7
⊢ (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → ◡𝑇:(1...𝑁)–1-1-onto→(1...𝑁)) |
| 87 | | f1odm 6852 |
. . . . . . 7
⊢ (◡𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → dom ◡𝑇 = (1...𝑁)) |
| 88 | 81, 86, 87 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → dom ◡𝑇 = (1...𝑁)) |
| 89 | 29, 88 | eleqtrrd 2844 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ dom ◡𝑇) |
| 90 | | fvco 7007 |
. . . . 5
⊢ ((Fun
◡𝑇 ∧ 𝑁 ∈ dom ◡𝑇) → ((𝑄 ∘ ◡𝑇)‘𝑁) = (𝑄‘(◡𝑇‘𝑁))) |
| 91 | 85, 89, 90 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑄 ∘ ◡𝑇)‘𝑁) = (𝑄‘(◡𝑇‘𝑁))) |
| 92 | 21, 50, 23, 13 | fzto1stinvn 33124 |
. . . . . 6
⊢ (𝑁 ∈ (1...𝑁) → (◡𝑇‘𝑁) = 1) |
| 93 | 29, 92 | syl 17 |
. . . . 5
⊢ (𝜑 → (◡𝑇‘𝑁) = 1) |
| 94 | 93 | fveq2d 6910 |
. . . 4
⊢ (𝜑 → (𝑄‘(◡𝑇‘𝑁)) = (𝑄‘1)) |
| 95 | 21, 47 | fzto1stfv1 33121 |
. . . . 5
⊢ (𝐽 ∈ (1...𝑁) → (𝑄‘1) = 𝐽) |
| 96 | 11, 95 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑄‘1) = 𝐽) |
| 97 | 91, 94, 96 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 → ((𝑄 ∘ ◡𝑇)‘𝑁) = 𝐽) |
| 98 | | crngring 20242 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 99 | 9, 98 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 100 | 2, 1 | minmar1cl 22657 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵) |
| 101 | 99, 12, 10, 11, 100 | syl22anc 839 |
. . . 4
⊢ (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵) |
| 102 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 22, 30, 47, 50, 20, 101 | madjusmdetlem3 33828 |
. . 3
⊢ (𝜑 → (𝐼(subMat1‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))𝐽) = (𝑁(subMat1‘(𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄 ∘ ◡𝑇)‘𝑙))))𝑁)) |
| 103 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 20, 46, 61, 79, 97, 102 | madjusmdetlem1 33826 |
. 2
⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |
| 104 | 23, 14, 13 | psgnco 21601 |
. . . . . . . 8
⊢
(((1...𝑁) ∈ Fin
∧ 𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘◡𝑆))) |
| 105 | 36, 25, 41, 104 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘◡𝑆))) |
| 106 | 21, 22, 23, 13, 14 | psgnfzto1st 33125 |
. . . . . . . . 9
⊢ (𝐼 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1))) |
| 107 | 10, 106 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1))) |
| 108 | 23, 14, 13 | psgninv 21600 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∈ Fin
∧ 𝑆 ∈
(Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘◡𝑆) = ((pmSgn‘(1...𝑁))‘𝑆)) |
| 109 | 36, 32, 108 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘◡𝑆) = ((pmSgn‘(1...𝑁))‘𝑆)) |
| 110 | 21, 30, 23, 13, 14 | psgnfzto1st 33125 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1))) |
| 111 | 29, 110 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1))) |
| 112 | 109, 111 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘◡𝑆) = (-1↑(𝑁 + 1))) |
| 113 | 107, 112 | oveq12d 7449 |
. . . . . . 7
⊢ (𝜑 → (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘◡𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1)))) |
| 114 | 105, 113 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1)))) |
| 115 | 23, 14, 13 | psgnco 21601 |
. . . . . . . 8
⊢
(((1...𝑁) ∈ Fin
∧ 𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘◡𝑇))) |
| 116 | 36, 49, 57, 115 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘◡𝑇))) |
| 117 | 21, 47, 23, 13, 14 | psgnfzto1st 33125 |
. . . . . . . . 9
⊢ (𝐽 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1))) |
| 118 | 11, 117 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1))) |
| 119 | 23, 14, 13 | psgninv 21600 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∈ Fin
∧ 𝑇 ∈
(Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘◡𝑇) = ((pmSgn‘(1...𝑁))‘𝑇)) |
| 120 | 36, 52, 119 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘◡𝑇) = ((pmSgn‘(1...𝑁))‘𝑇)) |
| 121 | 21, 50, 23, 13, 14 | psgnfzto1st 33125 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1))) |
| 122 | 29, 121 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1))) |
| 123 | 120, 122 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘◡𝑇) = (-1↑(𝑁 + 1))) |
| 124 | 118, 123 | oveq12d 7449 |
. . . . . . 7
⊢ (𝜑 → (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘◡𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) |
| 125 | 116, 124 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) |
| 126 | 114, 125 | oveq12d 7449 |
. . . . 5
⊢ (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇))) = (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))) |
| 127 | | 1cnd 11256 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℂ) |
| 128 | 127 | negcld 11607 |
. . . . . . . 8
⊢ (𝜑 → -1 ∈
ℂ) |
| 129 | | fz1ssnn 13595 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
ℕ |
| 130 | 129, 10 | sselid 3981 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐼 ∈ ℕ) |
| 131 | 130 | nnnn0d 12587 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈
ℕ0) |
| 132 | | 1nn0 12542 |
. . . . . . . . . 10
⊢ 1 ∈
ℕ0 |
| 133 | 132 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → 1 ∈
ℕ0) |
| 134 | 131, 133 | nn0addcld 12591 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 + 1) ∈
ℕ0) |
| 135 | 128, 134 | expcld 14186 |
. . . . . . 7
⊢ (𝜑 → (-1↑(𝐼 + 1)) ∈
ℂ) |
| 136 | 8 | nnnn0d 12587 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 137 | 136, 133 | nn0addcld 12591 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 138 | 128, 137 | expcld 14186 |
. . . . . . 7
⊢ (𝜑 → (-1↑(𝑁 + 1)) ∈
ℂ) |
| 139 | 129, 11 | sselid 3981 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ ℕ) |
| 140 | 139 | nnnn0d 12587 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 141 | 140, 133 | nn0addcld 12591 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 + 1) ∈
ℕ0) |
| 142 | 128, 141 | expcld 14186 |
. . . . . . 7
⊢ (𝜑 → (-1↑(𝐽 + 1)) ∈
ℂ) |
| 143 | 135, 138,
142, 138 | mul4d 11473 |
. . . . . 6
⊢ (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) ·
((-1↑(𝐽 + 1)) ·
(-1↑(𝑁 + 1)))) =
(((-1↑(𝐼 + 1))
· (-1↑(𝐽 + 1)))
· ((-1↑(𝑁 + 1))
· (-1↑(𝑁 +
1))))) |
| 144 | 128, 141,
134 | expaddd 14188 |
. . . . . . . 8
⊢ (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1)))) |
| 145 | 130 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 146 | 139 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 147 | 145, 127,
146, 127 | add4d 11490 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + (1 + 1))) |
| 148 | | 1p1e2 12391 |
. . . . . . . . . . . 12
⊢ (1 + 1) =
2 |
| 149 | 148 | oveq2i 7442 |
. . . . . . . . . . 11
⊢ ((𝐼 + 𝐽) + (1 + 1)) = ((𝐼 + 𝐽) + 2) |
| 150 | 147, 149 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + 2)) |
| 151 | 150 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑((𝐼 + 𝐽) + 2))) |
| 152 | | 2nn0 12543 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
| 153 | 152 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 2 ∈
ℕ0) |
| 154 | 131, 140 | nn0addcld 12591 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼 + 𝐽) ∈
ℕ0) |
| 155 | 128, 153,
154 | expaddd 14188 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · (-1↑2))) |
| 156 | | neg1sqe1 14235 |
. . . . . . . . . . 11
⊢
(-1↑2) = 1 |
| 157 | 156 | oveq2i 7442 |
. . . . . . . . . 10
⊢
((-1↑(𝐼 + 𝐽)) · (-1↑2)) =
((-1↑(𝐼 + 𝐽)) · 1) |
| 158 | 155, 157 | eqtrdi 2793 |
. . . . . . . . 9
⊢ (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · 1)) |
| 159 | 128, 154 | expcld 14186 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑(𝐼 + 𝐽)) ∈ ℂ) |
| 160 | 159 | mulridd 11278 |
. . . . . . . . 9
⊢ (𝜑 → ((-1↑(𝐼 + 𝐽)) · 1) = (-1↑(𝐼 + 𝐽))) |
| 161 | 151, 158,
160 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑(𝐼 + 𝐽))) |
| 162 | 144, 161 | eqtr3d 2779 |
. . . . . . 7
⊢ (𝜑 → ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) = (-1↑(𝐼 + 𝐽))) |
| 163 | 137 | nn0zd 12639 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈ ℤ) |
| 164 | | m1expcl2 14126 |
. . . . . . . 8
⊢ ((𝑁 + 1) ∈ ℤ →
(-1↑(𝑁 + 1)) ∈
{-1, 1}) |
| 165 | | 1neg1t1neg1 32748 |
. . . . . . . 8
⊢
((-1↑(𝑁 + 1))
∈ {-1, 1} → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1) |
| 166 | 163, 164,
165 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1) |
| 167 | 162, 166 | oveq12d 7449 |
. . . . . 6
⊢ (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) ·
((-1↑(𝑁 + 1)) ·
(-1↑(𝑁 + 1)))) =
((-1↑(𝐼 + 𝐽)) · 1)) |
| 168 | 143, 167,
160 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) ·
((-1↑(𝐽 + 1)) ·
(-1↑(𝑁 + 1)))) =
(-1↑(𝐼 + 𝐽))) |
| 169 | 126, 168 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇))) = (-1↑(𝐼 + 𝐽))) |
| 170 | 169 | fveq2d 6910 |
. . 3
⊢ (𝜑 → (𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇)))) = (𝑍‘(-1↑(𝐼 + 𝐽)))) |
| 171 | 170 | oveq1d 7446 |
. 2
⊢ (𝜑 → ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃 ∘ ◡𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄 ∘ ◡𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |
| 172 | 103, 171 | eqtrd 2777 |
1
⊢ (𝜑 → (𝐽(𝐾‘𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))) |