Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem4 Structured version   Visualization version   GIF version

Theorem madjusmdetlem4 33829
Description: Lemma for madjusmdet 33830. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
Assertion
Ref Expression
madjusmdetlem4 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem4
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madjusmdet.b . . 3 𝐵 = (Base‘𝐴)
2 madjusmdet.a . . 3 𝐴 = ((1...𝑁) Mat 𝑅)
3 madjusmdet.d . . 3 𝐷 = ((1...𝑁) maDet 𝑅)
4 madjusmdet.k . . 3 𝐾 = ((1...𝑁) maAdju 𝑅)
5 madjusmdet.t . . 3 · = (.r𝑅)
6 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
7 madjusmdet.e . . 3 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
8 madjusmdet.n . . 3 (𝜑𝑁 ∈ ℕ)
9 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
10 madjusmdet.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
11 madjusmdet.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
12 madjusmdet.m . . 3 (𝜑𝑀𝐵)
13 eqid 2737 . . 3 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
14 eqid 2737 . . 3 (pmSgn‘(1...𝑁)) = (pmSgn‘(1...𝑁))
15 eqid 2737 . . 3 (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
16 fveq2 6906 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑆)‘𝑘) = ((𝑃𝑆)‘𝑖))
1716oveq1d 7446 . . . 4 (𝑘 = 𝑖 → (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)) = (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)))
18 fveq2 6906 . . . . 5 (𝑙 = 𝑗 → ((𝑄𝑇)‘𝑙) = ((𝑄𝑇)‘𝑗))
1918oveq2d 7447 . . . 4 (𝑙 = 𝑗 → (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)) = (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑗)))
2017, 19cbvmpov 7528 . . 3 (𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑗)))
21 eqid 2737 . . . . . 6 (1...𝑁) = (1...𝑁)
22 madjusmdetlem2.p . . . . . 6 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
23 eqid 2737 . . . . . 6 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
2421, 22, 23, 13fzto1st 33123 . . . . 5 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
2510, 24syl 17 . . . 4 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
26 nnuz 12921 . . . . . . . . 9 ℕ = (ℤ‘1)
278, 26eleqtrdi 2851 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
28 eluzfz2 13572 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑𝑁 ∈ (1...𝑁))
30 madjusmdetlem2.s . . . . . . . 8 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
3121, 30, 23, 13fzto1st 33123 . . . . . . 7 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
3229, 31syl 17 . . . . . 6 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
33 eqid 2737 . . . . . . 7 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
3423, 13, 33symginv 19420 . . . . . 6 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
3532, 34syl 17 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
36 fzfid 14014 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
3723symggrp 19418 . . . . . . 7 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
3836, 37syl 17 . . . . . 6 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
3913, 33grpinvcl 19005 . . . . . 6 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4038, 32, 39syl2anc 584 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4135, 40eqeltrrd 2842 . . . 4 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
42 eqid 2737 . . . . . 6 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
4323, 13, 42symgov 19401 . . . . 5 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
4423, 13, 42symgcl 19402 . . . . 5 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4543, 44eqeltrrd 2842 . . . 4 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4625, 41, 45syl2anc 584 . . 3 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
47 madjusmdetlem4.q . . . . . 6 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
4821, 47, 23, 13fzto1st 33123 . . . . 5 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
4911, 48syl 17 . . . 4 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
50 madjusmdetlem4.t . . . . . . . 8 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5121, 50, 23, 13fzto1st 33123 . . . . . . 7 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5229, 51syl 17 . . . . . 6 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5323, 13, 33symginv 19420 . . . . . 6 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
5452, 53syl 17 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
5513, 33grpinvcl 19005 . . . . . 6 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
5638, 52, 55syl2anc 584 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
5754, 56eqeltrrd 2842 . . . 4 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5823, 13, 42symgov 19401 . . . . 5 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
5923, 13, 42symgcl 19402 . . . . 5 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6058, 59eqeltrrd 2842 . . . 4 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6149, 57, 60syl2anc 584 . . 3 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6223, 13symgbasf1o 19392 . . . . . . 7 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
6332, 62syl 17 . . . . . 6 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
64 f1of1 6847 . . . . . 6 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1→(1...𝑁))
65 df-f1 6566 . . . . . . 7 (𝑆:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑆:(1...𝑁)⟶(1...𝑁) ∧ Fun 𝑆))
6665simprbi 496 . . . . . 6 (𝑆:(1...𝑁)–1-1→(1...𝑁) → Fun 𝑆)
6763, 64, 663syl 18 . . . . 5 (𝜑 → Fun 𝑆)
68 f1ocnv 6860 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
69 f1odm 6852 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑆 = (1...𝑁))
7063, 68, 693syl 18 . . . . . 6 (𝜑 → dom 𝑆 = (1...𝑁))
7129, 70eleqtrrd 2844 . . . . 5 (𝜑𝑁 ∈ dom 𝑆)
72 fvco 7007 . . . . 5 ((Fun 𝑆𝑁 ∈ dom 𝑆) → ((𝑃𝑆)‘𝑁) = (𝑃‘(𝑆𝑁)))
7367, 71, 72syl2anc 584 . . . 4 (𝜑 → ((𝑃𝑆)‘𝑁) = (𝑃‘(𝑆𝑁)))
7421, 30, 23, 13fzto1stinvn 33124 . . . . . 6 (𝑁 ∈ (1...𝑁) → (𝑆𝑁) = 1)
7529, 74syl 17 . . . . 5 (𝜑 → (𝑆𝑁) = 1)
7675fveq2d 6910 . . . 4 (𝜑 → (𝑃‘(𝑆𝑁)) = (𝑃‘1))
7721, 22fzto1stfv1 33121 . . . . 5 (𝐼 ∈ (1...𝑁) → (𝑃‘1) = 𝐼)
7810, 77syl 17 . . . 4 (𝜑 → (𝑃‘1) = 𝐼)
7973, 76, 783eqtrd 2781 . . 3 (𝜑 → ((𝑃𝑆)‘𝑁) = 𝐼)
8023, 13symgbasf1o 19392 . . . . . . 7 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
8152, 80syl 17 . . . . . 6 (𝜑𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
82 f1of1 6847 . . . . . 6 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1→(1...𝑁))
83 df-f1 6566 . . . . . . 7 (𝑇:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑇:(1...𝑁)⟶(1...𝑁) ∧ Fun 𝑇))
8483simprbi 496 . . . . . 6 (𝑇:(1...𝑁)–1-1→(1...𝑁) → Fun 𝑇)
8581, 82, 843syl 18 . . . . 5 (𝜑 → Fun 𝑇)
86 f1ocnv 6860 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
87 f1odm 6852 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑇 = (1...𝑁))
8881, 86, 873syl 18 . . . . . 6 (𝜑 → dom 𝑇 = (1...𝑁))
8929, 88eleqtrrd 2844 . . . . 5 (𝜑𝑁 ∈ dom 𝑇)
90 fvco 7007 . . . . 5 ((Fun 𝑇𝑁 ∈ dom 𝑇) → ((𝑄𝑇)‘𝑁) = (𝑄‘(𝑇𝑁)))
9185, 89, 90syl2anc 584 . . . 4 (𝜑 → ((𝑄𝑇)‘𝑁) = (𝑄‘(𝑇𝑁)))
9221, 50, 23, 13fzto1stinvn 33124 . . . . . 6 (𝑁 ∈ (1...𝑁) → (𝑇𝑁) = 1)
9329, 92syl 17 . . . . 5 (𝜑 → (𝑇𝑁) = 1)
9493fveq2d 6910 . . . 4 (𝜑 → (𝑄‘(𝑇𝑁)) = (𝑄‘1))
9521, 47fzto1stfv1 33121 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝑄‘1) = 𝐽)
9611, 95syl 17 . . . 4 (𝜑 → (𝑄‘1) = 𝐽)
9791, 94, 963eqtrd 2781 . . 3 (𝜑 → ((𝑄𝑇)‘𝑁) = 𝐽)
98 crngring 20242 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
999, 98syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
1002, 1minmar1cl 22657 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
10199, 12, 10, 11, 100syl22anc 839 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
1021, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 22, 30, 47, 50, 20, 101madjusmdetlem3 33828 . . 3 (𝜑 → (𝐼(subMat1‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))𝐽) = (𝑁(subMat1‘(𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙))))𝑁))
1031, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 46, 61, 79, 97, 102madjusmdetlem1 33826 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
10423, 14, 13psgnco 21601 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)))
10536, 25, 41, 104syl3anc 1373 . . . . . . 7 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)))
10621, 22, 23, 13, 14psgnfzto1st 33125 . . . . . . . . 9 (𝐼 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1)))
10710, 106syl 17 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1)))
10823, 14, 13psgninv 21600 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘𝑆) = ((pmSgn‘(1...𝑁))‘𝑆))
10936, 32, 108syl2anc 584 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = ((pmSgn‘(1...𝑁))‘𝑆))
11021, 30, 23, 13, 14psgnfzto1st 33125 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
11129, 110syl 17 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
112109, 111eqtrd 2777 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
113107, 112oveq12d 7449 . . . . . . 7 (𝜑 → (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))))
114105, 113eqtrd 2777 . . . . . 6 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))))
11523, 14, 13psgnco 21601 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)))
11636, 49, 57, 115syl3anc 1373 . . . . . . 7 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)))
11721, 47, 23, 13, 14psgnfzto1st 33125 . . . . . . . . 9 (𝐽 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1)))
11811, 117syl 17 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1)))
11923, 14, 13psgninv 21600 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘𝑇) = ((pmSgn‘(1...𝑁))‘𝑇))
12036, 52, 119syl2anc 584 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = ((pmSgn‘(1...𝑁))‘𝑇))
12121, 50, 23, 13, 14psgnfzto1st 33125 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
12229, 121syl 17 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
123120, 122eqtrd 2777 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
124118, 123oveq12d 7449 . . . . . . 7 (𝜑 → (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))
125116, 124eqtrd 2777 . . . . . 6 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))
126114, 125oveq12d 7449 . . . . 5 (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇))) = (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))))
127 1cnd 11256 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
128127negcld 11607 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
129 fz1ssnn 13595 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ
130129, 10sselid 3981 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
131130nnnn0d 12587 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ0)
132 1nn0 12542 . . . . . . . . . 10 1 ∈ ℕ0
133132a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
134131, 133nn0addcld 12591 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ ℕ0)
135128, 134expcld 14186 . . . . . . 7 (𝜑 → (-1↑(𝐼 + 1)) ∈ ℂ)
1368nnnn0d 12587 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
137136, 133nn0addcld 12591 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
138128, 137expcld 14186 . . . . . . 7 (𝜑 → (-1↑(𝑁 + 1)) ∈ ℂ)
139129, 11sselid 3981 . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ)
140139nnnn0d 12587 . . . . . . . . 9 (𝜑𝐽 ∈ ℕ0)
141140, 133nn0addcld 12591 . . . . . . . 8 (𝜑 → (𝐽 + 1) ∈ ℕ0)
142128, 141expcld 14186 . . . . . . 7 (𝜑 → (-1↑(𝐽 + 1)) ∈ ℂ)
143135, 138, 142, 138mul4d 11473 . . . . . 6 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) = (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) · ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1)))))
144128, 141, 134expaddd 14188 . . . . . . . 8 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))))
145130nncnd 12282 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℂ)
146139nncnd 12282 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℂ)
147145, 127, 146, 127add4d 11490 . . . . . . . . . . 11 (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + (1 + 1)))
148 1p1e2 12391 . . . . . . . . . . . 12 (1 + 1) = 2
149148oveq2i 7442 . . . . . . . . . . 11 ((𝐼 + 𝐽) + (1 + 1)) = ((𝐼 + 𝐽) + 2)
150147, 149eqtrdi 2793 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + 2))
151150oveq2d 7447 . . . . . . . . 9 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑((𝐼 + 𝐽) + 2)))
152 2nn0 12543 . . . . . . . . . . . 12 2 ∈ ℕ0
153152a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
154131, 140nn0addcld 12591 . . . . . . . . . . 11 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
155128, 153, 154expaddd 14188 . . . . . . . . . 10 (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · (-1↑2)))
156 neg1sqe1 14235 . . . . . . . . . . 11 (-1↑2) = 1
157156oveq2i 7442 . . . . . . . . . 10 ((-1↑(𝐼 + 𝐽)) · (-1↑2)) = ((-1↑(𝐼 + 𝐽)) · 1)
158155, 157eqtrdi 2793 . . . . . . . . 9 (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · 1))
159128, 154expcld 14186 . . . . . . . . . 10 (𝜑 → (-1↑(𝐼 + 𝐽)) ∈ ℂ)
160159mulridd 11278 . . . . . . . . 9 (𝜑 → ((-1↑(𝐼 + 𝐽)) · 1) = (-1↑(𝐼 + 𝐽)))
161151, 158, 1603eqtrd 2781 . . . . . . . 8 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑(𝐼 + 𝐽)))
162144, 161eqtr3d 2779 . . . . . . 7 (𝜑 → ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) = (-1↑(𝐼 + 𝐽)))
163137nn0zd 12639 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
164 m1expcl2 14126 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (-1↑(𝑁 + 1)) ∈ {-1, 1})
165 1neg1t1neg1 32748 . . . . . . . 8 ((-1↑(𝑁 + 1)) ∈ {-1, 1} → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1)
166163, 164, 1653syl 18 . . . . . . 7 (𝜑 → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1)
167162, 166oveq12d 7449 . . . . . 6 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) · ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1)))) = ((-1↑(𝐼 + 𝐽)) · 1))
168143, 167, 1603eqtrd 2781 . . . . 5 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) = (-1↑(𝐼 + 𝐽)))
169126, 168eqtrd 2777 . . . 4 (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇))) = (-1↑(𝐼 + 𝐽)))
170169fveq2d 6910 . . 3 (𝜑 → (𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) = (𝑍‘(-1↑(𝐼 + 𝐽))))
171170oveq1d 7446 . 2 (𝜑 → ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
172103, 171eqtrd 2777 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4525  {cpr 4628   class class class wbr 5143  cmpt 5225  ccnv 5684  dom cdm 5685  ccom 5689  Fun wfun 6555  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  1c1 11156   + caddc 11158   · cmul 11160  cle 11296  cmin 11492  -cneg 11493  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  cexp 14102  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  Grpcgrp 18951  invgcminusg 18952  SymGrpcsymg 19386  pmSgncpsgn 19507  Ringcrg 20230  CRingccrg 20231  ℤRHomczrh 21510   Mat cmat 22411   maDet cmdat 22590   maAdju cmadu 22638   minMatR1 cminmar1 22639  subMat1csmat 33792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-dsmm 21752  df-frlm 21767  df-mat 22412  df-marrep 22564  df-subma 22583  df-mdet 22591  df-madu 22640  df-minmar1 22641  df-smat 33793
This theorem is referenced by:  madjusmdet  33830
  Copyright terms: Public domain W3C validator