Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem4 Structured version   Visualization version   GIF version

Theorem madjusmdetlem4 33861
Description: Lemma for madjusmdet 33862. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
Assertion
Ref Expression
madjusmdetlem4 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem4
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madjusmdet.b . . 3 𝐵 = (Base‘𝐴)
2 madjusmdet.a . . 3 𝐴 = ((1...𝑁) Mat 𝑅)
3 madjusmdet.d . . 3 𝐷 = ((1...𝑁) maDet 𝑅)
4 madjusmdet.k . . 3 𝐾 = ((1...𝑁) maAdju 𝑅)
5 madjusmdet.t . . 3 · = (.r𝑅)
6 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
7 madjusmdet.e . . 3 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
8 madjusmdet.n . . 3 (𝜑𝑁 ∈ ℕ)
9 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
10 madjusmdet.i . . 3 (𝜑𝐼 ∈ (1...𝑁))
11 madjusmdet.j . . 3 (𝜑𝐽 ∈ (1...𝑁))
12 madjusmdet.m . . 3 (𝜑𝑀𝐵)
13 eqid 2735 . . 3 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
14 eqid 2735 . . 3 (pmSgn‘(1...𝑁)) = (pmSgn‘(1...𝑁))
15 eqid 2735 . . 3 (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
16 fveq2 6876 . . . . 5 (𝑘 = 𝑖 → ((𝑃𝑆)‘𝑘) = ((𝑃𝑆)‘𝑖))
1716oveq1d 7420 . . . 4 (𝑘 = 𝑖 → (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)) = (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)))
18 fveq2 6876 . . . . 5 (𝑙 = 𝑗 → ((𝑄𝑇)‘𝑙) = ((𝑄𝑇)‘𝑗))
1918oveq2d 7421 . . . 4 (𝑙 = 𝑗 → (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙)) = (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑗)))
2017, 19cbvmpov 7502 . . 3 (𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑗)))
21 eqid 2735 . . . . . 6 (1...𝑁) = (1...𝑁)
22 madjusmdetlem2.p . . . . . 6 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
23 eqid 2735 . . . . . 6 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
2421, 22, 23, 13fzto1st 33114 . . . . 5 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
2510, 24syl 17 . . . 4 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
26 nnuz 12895 . . . . . . . . 9 ℕ = (ℤ‘1)
278, 26eleqtrdi 2844 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘1))
28 eluzfz2 13549 . . . . . . . 8 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
2927, 28syl 17 . . . . . . 7 (𝜑𝑁 ∈ (1...𝑁))
30 madjusmdetlem2.s . . . . . . . 8 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
3121, 30, 23, 13fzto1st 33114 . . . . . . 7 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
3229, 31syl 17 . . . . . 6 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
33 eqid 2735 . . . . . . 7 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
3423, 13, 33symginv 19383 . . . . . 6 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
3532, 34syl 17 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
36 fzfid 13991 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
3723symggrp 19381 . . . . . . 7 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
3836, 37syl 17 . . . . . 6 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
3913, 33grpinvcl 18970 . . . . . 6 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4038, 32, 39syl2anc 584 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4135, 40eqeltrrd 2835 . . . 4 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
42 eqid 2735 . . . . . 6 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
4323, 13, 42symgov 19365 . . . . 5 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
4423, 13, 42symgcl 19366 . . . . 5 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4543, 44eqeltrrd 2835 . . . 4 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
4625, 41, 45syl2anc 584 . . 3 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
47 madjusmdetlem4.q . . . . . 6 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
4821, 47, 23, 13fzto1st 33114 . . . . 5 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
4911, 48syl 17 . . . 4 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
50 madjusmdetlem4.t . . . . . . . 8 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5121, 50, 23, 13fzto1st 33114 . . . . . . 7 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5229, 51syl 17 . . . . . 6 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5323, 13, 33symginv 19383 . . . . . 6 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
5452, 53syl 17 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
5513, 33grpinvcl 18970 . . . . . 6 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
5638, 52, 55syl2anc 584 . . . . 5 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
5754, 56eqeltrrd 2835 . . . 4 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
5823, 13, 42symgov 19365 . . . . 5 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
5923, 13, 42symgcl 19366 . . . . 5 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6058, 59eqeltrrd 2835 . . . 4 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6149, 57, 60syl2anc 584 . . 3 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
6223, 13symgbasf1o 19356 . . . . . . 7 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
6332, 62syl 17 . . . . . 6 (𝜑𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
64 f1of1 6817 . . . . . 6 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1→(1...𝑁))
65 df-f1 6536 . . . . . . 7 (𝑆:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑆:(1...𝑁)⟶(1...𝑁) ∧ Fun 𝑆))
6665simprbi 496 . . . . . 6 (𝑆:(1...𝑁)–1-1→(1...𝑁) → Fun 𝑆)
6763, 64, 663syl 18 . . . . 5 (𝜑 → Fun 𝑆)
68 f1ocnv 6830 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑆:(1...𝑁)–1-1-onto→(1...𝑁))
69 f1odm 6822 . . . . . . 7 (𝑆:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑆 = (1...𝑁))
7063, 68, 693syl 18 . . . . . 6 (𝜑 → dom 𝑆 = (1...𝑁))
7129, 70eleqtrrd 2837 . . . . 5 (𝜑𝑁 ∈ dom 𝑆)
72 fvco 6977 . . . . 5 ((Fun 𝑆𝑁 ∈ dom 𝑆) → ((𝑃𝑆)‘𝑁) = (𝑃‘(𝑆𝑁)))
7367, 71, 72syl2anc 584 . . . 4 (𝜑 → ((𝑃𝑆)‘𝑁) = (𝑃‘(𝑆𝑁)))
7421, 30, 23, 13fzto1stinvn 33115 . . . . . 6 (𝑁 ∈ (1...𝑁) → (𝑆𝑁) = 1)
7529, 74syl 17 . . . . 5 (𝜑 → (𝑆𝑁) = 1)
7675fveq2d 6880 . . . 4 (𝜑 → (𝑃‘(𝑆𝑁)) = (𝑃‘1))
7721, 22fzto1stfv1 33112 . . . . 5 (𝐼 ∈ (1...𝑁) → (𝑃‘1) = 𝐼)
7810, 77syl 17 . . . 4 (𝜑 → (𝑃‘1) = 𝐼)
7973, 76, 783eqtrd 2774 . . 3 (𝜑 → ((𝑃𝑆)‘𝑁) = 𝐼)
8023, 13symgbasf1o 19356 . . . . . . 7 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
8152, 80syl 17 . . . . . 6 (𝜑𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
82 f1of1 6817 . . . . . 6 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1→(1...𝑁))
83 df-f1 6536 . . . . . . 7 (𝑇:(1...𝑁)–1-1→(1...𝑁) ↔ (𝑇:(1...𝑁)⟶(1...𝑁) ∧ Fun 𝑇))
8483simprbi 496 . . . . . 6 (𝑇:(1...𝑁)–1-1→(1...𝑁) → Fun 𝑇)
8581, 82, 843syl 18 . . . . 5 (𝜑 → Fun 𝑇)
86 f1ocnv 6830 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → 𝑇:(1...𝑁)–1-1-onto→(1...𝑁))
87 f1odm 6822 . . . . . . 7 (𝑇:(1...𝑁)–1-1-onto→(1...𝑁) → dom 𝑇 = (1...𝑁))
8881, 86, 873syl 18 . . . . . 6 (𝜑 → dom 𝑇 = (1...𝑁))
8929, 88eleqtrrd 2837 . . . . 5 (𝜑𝑁 ∈ dom 𝑇)
90 fvco 6977 . . . . 5 ((Fun 𝑇𝑁 ∈ dom 𝑇) → ((𝑄𝑇)‘𝑁) = (𝑄‘(𝑇𝑁)))
9185, 89, 90syl2anc 584 . . . 4 (𝜑 → ((𝑄𝑇)‘𝑁) = (𝑄‘(𝑇𝑁)))
9221, 50, 23, 13fzto1stinvn 33115 . . . . . 6 (𝑁 ∈ (1...𝑁) → (𝑇𝑁) = 1)
9329, 92syl 17 . . . . 5 (𝜑 → (𝑇𝑁) = 1)
9493fveq2d 6880 . . . 4 (𝜑 → (𝑄‘(𝑇𝑁)) = (𝑄‘1))
9521, 47fzto1stfv1 33112 . . . . 5 (𝐽 ∈ (1...𝑁) → (𝑄‘1) = 𝐽)
9611, 95syl 17 . . . 4 (𝜑 → (𝑄‘1) = 𝐽)
9791, 94, 963eqtrd 2774 . . 3 (𝜑 → ((𝑄𝑇)‘𝑁) = 𝐽)
98 crngring 20205 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
999, 98syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
1002, 1minmar1cl 22589 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
10199, 12, 10, 11, 100syl22anc 838 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
1021, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 22, 30, 47, 50, 20, 101madjusmdetlem3 33860 . . 3 (𝜑 → (𝐼(subMat1‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))𝐽) = (𝑁(subMat1‘(𝑘 ∈ (1...𝑁), 𝑙 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑘)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)((𝑄𝑇)‘𝑙))))𝑁))
1031, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 46, 61, 79, 97, 102madjusmdetlem1 33858 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
10423, 14, 13psgnco 21543 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)))
10536, 25, 41, 104syl3anc 1373 . . . . . . 7 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)))
10621, 22, 23, 13, 14psgnfzto1st 33116 . . . . . . . . 9 (𝐼 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1)))
10710, 106syl 17 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑃) = (-1↑(𝐼 + 1)))
10823, 14, 13psgninv 21542 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘𝑆) = ((pmSgn‘(1...𝑁))‘𝑆))
10936, 32, 108syl2anc 584 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = ((pmSgn‘(1...𝑁))‘𝑆))
11021, 30, 23, 13, 14psgnfzto1st 33116 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
11129, 110syl 17 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
112109, 111eqtrd 2770 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑆) = (-1↑(𝑁 + 1)))
113107, 112oveq12d 7423 . . . . . . 7 (𝜑 → (((pmSgn‘(1...𝑁))‘𝑃) · ((pmSgn‘(1...𝑁))‘𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))))
114105, 113eqtrd 2770 . . . . . 6 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑃𝑆)) = ((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))))
11523, 14, 13psgnco 21543 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)))
11636, 49, 57, 115syl3anc 1373 . . . . . . 7 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)))
11721, 47, 23, 13, 14psgnfzto1st 33116 . . . . . . . . 9 (𝐽 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1)))
11811, 117syl 17 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑄) = (-1↑(𝐽 + 1)))
11923, 14, 13psgninv 21542 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((pmSgn‘(1...𝑁))‘𝑇) = ((pmSgn‘(1...𝑁))‘𝑇))
12036, 52, 119syl2anc 584 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = ((pmSgn‘(1...𝑁))‘𝑇))
12121, 50, 23, 13, 14psgnfzto1st 33116 . . . . . . . . . 10 (𝑁 ∈ (1...𝑁) → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
12229, 121syl 17 . . . . . . . . 9 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
123120, 122eqtrd 2770 . . . . . . . 8 (𝜑 → ((pmSgn‘(1...𝑁))‘𝑇) = (-1↑(𝑁 + 1)))
124118, 123oveq12d 7423 . . . . . . 7 (𝜑 → (((pmSgn‘(1...𝑁))‘𝑄) · ((pmSgn‘(1...𝑁))‘𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))
125116, 124eqtrd 2770 . . . . . 6 (𝜑 → ((pmSgn‘(1...𝑁))‘(𝑄𝑇)) = ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1))))
126114, 125oveq12d 7423 . . . . 5 (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇))) = (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))))
127 1cnd 11230 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
128127negcld 11581 . . . . . . . 8 (𝜑 → -1 ∈ ℂ)
129 fz1ssnn 13572 . . . . . . . . . . 11 (1...𝑁) ⊆ ℕ
130129, 10sselid 3956 . . . . . . . . . 10 (𝜑𝐼 ∈ ℕ)
131130nnnn0d 12562 . . . . . . . . 9 (𝜑𝐼 ∈ ℕ0)
132 1nn0 12517 . . . . . . . . . 10 1 ∈ ℕ0
133132a1i 11 . . . . . . . . 9 (𝜑 → 1 ∈ ℕ0)
134131, 133nn0addcld 12566 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ ℕ0)
135128, 134expcld 14164 . . . . . . 7 (𝜑 → (-1↑(𝐼 + 1)) ∈ ℂ)
1368nnnn0d 12562 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
137136, 133nn0addcld 12566 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℕ0)
138128, 137expcld 14164 . . . . . . 7 (𝜑 → (-1↑(𝑁 + 1)) ∈ ℂ)
139129, 11sselid 3956 . . . . . . . . . 10 (𝜑𝐽 ∈ ℕ)
140139nnnn0d 12562 . . . . . . . . 9 (𝜑𝐽 ∈ ℕ0)
141140, 133nn0addcld 12566 . . . . . . . 8 (𝜑 → (𝐽 + 1) ∈ ℕ0)
142128, 141expcld 14164 . . . . . . 7 (𝜑 → (-1↑(𝐽 + 1)) ∈ ℂ)
143135, 138, 142, 138mul4d 11447 . . . . . 6 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) = (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) · ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1)))))
144128, 141, 134expaddd 14166 . . . . . . . 8 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))))
145130nncnd 12256 . . . . . . . . . . . 12 (𝜑𝐼 ∈ ℂ)
146139nncnd 12256 . . . . . . . . . . . 12 (𝜑𝐽 ∈ ℂ)
147145, 127, 146, 127add4d 11464 . . . . . . . . . . 11 (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + (1 + 1)))
148 1p1e2 12365 . . . . . . . . . . . 12 (1 + 1) = 2
149148oveq2i 7416 . . . . . . . . . . 11 ((𝐼 + 𝐽) + (1 + 1)) = ((𝐼 + 𝐽) + 2)
150147, 149eqtrdi 2786 . . . . . . . . . 10 (𝜑 → ((𝐼 + 1) + (𝐽 + 1)) = ((𝐼 + 𝐽) + 2))
151150oveq2d 7421 . . . . . . . . 9 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑((𝐼 + 𝐽) + 2)))
152 2nn0 12518 . . . . . . . . . . . 12 2 ∈ ℕ0
153152a1i 11 . . . . . . . . . . 11 (𝜑 → 2 ∈ ℕ0)
154131, 140nn0addcld 12566 . . . . . . . . . . 11 (𝜑 → (𝐼 + 𝐽) ∈ ℕ0)
155128, 153, 154expaddd 14166 . . . . . . . . . 10 (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · (-1↑2)))
156 neg1sqe1 14214 . . . . . . . . . . 11 (-1↑2) = 1
157156oveq2i 7416 . . . . . . . . . 10 ((-1↑(𝐼 + 𝐽)) · (-1↑2)) = ((-1↑(𝐼 + 𝐽)) · 1)
158155, 157eqtrdi 2786 . . . . . . . . 9 (𝜑 → (-1↑((𝐼 + 𝐽) + 2)) = ((-1↑(𝐼 + 𝐽)) · 1))
159128, 154expcld 14164 . . . . . . . . . 10 (𝜑 → (-1↑(𝐼 + 𝐽)) ∈ ℂ)
160159mulridd 11252 . . . . . . . . 9 (𝜑 → ((-1↑(𝐼 + 𝐽)) · 1) = (-1↑(𝐼 + 𝐽)))
161151, 158, 1603eqtrd 2774 . . . . . . . 8 (𝜑 → (-1↑((𝐼 + 1) + (𝐽 + 1))) = (-1↑(𝐼 + 𝐽)))
162144, 161eqtr3d 2772 . . . . . . 7 (𝜑 → ((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) = (-1↑(𝐼 + 𝐽)))
163137nn0zd 12614 . . . . . . . 8 (𝜑 → (𝑁 + 1) ∈ ℤ)
164 m1expcl2 14103 . . . . . . . 8 ((𝑁 + 1) ∈ ℤ → (-1↑(𝑁 + 1)) ∈ {-1, 1})
165 1neg1t1neg1 32715 . . . . . . . 8 ((-1↑(𝑁 + 1)) ∈ {-1, 1} → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1)
166163, 164, 1653syl 18 . . . . . . 7 (𝜑 → ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1))) = 1)
167162, 166oveq12d 7423 . . . . . 6 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝐽 + 1))) · ((-1↑(𝑁 + 1)) · (-1↑(𝑁 + 1)))) = ((-1↑(𝐼 + 𝐽)) · 1))
168143, 167, 1603eqtrd 2774 . . . . 5 (𝜑 → (((-1↑(𝐼 + 1)) · (-1↑(𝑁 + 1))) · ((-1↑(𝐽 + 1)) · (-1↑(𝑁 + 1)))) = (-1↑(𝐼 + 𝐽)))
169126, 168eqtrd 2770 . . . 4 (𝜑 → (((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇))) = (-1↑(𝐼 + 𝐽)))
170169fveq2d 6880 . . 3 (𝜑 → (𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) = (𝑍‘(-1↑(𝐼 + 𝐽))))
171170oveq1d 7420 . 2 (𝜑 → ((𝑍‘(((pmSgn‘(1...𝑁))‘(𝑃𝑆)) · ((pmSgn‘(1...𝑁))‘(𝑄𝑇)))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
172103, 171eqtrd 2770 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘(-1↑(𝐼 + 𝐽))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4500  {cpr 4603   class class class wbr 5119  cmpt 5201  ccnv 5653  dom cdm 5654  ccom 5658  Fun wfun 6525  wf 6527  1-1wf1 6528  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  Fincfn 8959  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  cmin 11466  -cneg 11467  cn 12240  2c2 12295  0cn0 12501  cz 12588  cuz 12852  ...cfz 13524  cexp 14079  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  Grpcgrp 18916  invgcminusg 18917  SymGrpcsymg 19350  pmSgncpsgn 19470  Ringcrg 20193  CRingccrg 20194  ℤRHomczrh 21460   Mat cmat 22345   maDet cmdat 22522   maAdju cmadu 22570   minMatR1 cminmar1 22571  subMat1csmat 33824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-splice 14768  df-reverse 14777  df-s2 14867  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-efmnd 18847  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-ghm 19196  df-gim 19242  df-cntz 19300  df-oppg 19329  df-symg 19351  df-pmtr 19423  df-psgn 19472  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-drng 20691  df-sra 21131  df-rgmod 21132  df-cnfld 21316  df-zring 21408  df-zrh 21464  df-dsmm 21692  df-frlm 21707  df-mat 22346  df-marrep 22496  df-subma 22515  df-mdet 22523  df-madu 22572  df-minmar1 22573  df-smat 33825
This theorem is referenced by:  madjusmdet  33862
  Copyright terms: Public domain W3C validator