MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remullem Structured version   Visualization version   GIF version

Theorem remullem 14475
Description: Lemma for remul 14476, immul 14483, and cjmul 14489. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))

Proof of Theorem remullem
StepHypRef Expression
1 replim 14463 . . . . . 6 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
2 replim 14463 . . . . . 6 (𝐵 ∈ ℂ → 𝐵 = ((ℜ‘𝐵) + (i · (ℑ‘𝐵))))
31, 2oveqan12d 7164 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))))
4 recl 14457 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
54adantr 481 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℝ)
65recnd 10657 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐴) ∈ ℂ)
7 ax-icn 10584 . . . . . . . 8 i ∈ ℂ
8 imcl 14458 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
98adantr 481 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℝ)
109recnd 10657 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐴) ∈ ℂ)
11 mulcl 10609 . . . . . . . 8 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
127, 10, 11sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
136, 12addcld 10648 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) + (i · (ℑ‘𝐴))) ∈ ℂ)
14 recl 14457 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1514adantl 482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℝ)
1615recnd 10657 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘𝐵) ∈ ℂ)
17 imcl 14458 . . . . . . . . 9 (𝐵 ∈ ℂ → (ℑ‘𝐵) ∈ ℝ)
1817adantl 482 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℝ)
1918recnd 10657 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘𝐵) ∈ ℂ)
20 mulcl 10609 . . . . . . 7 ((i ∈ ℂ ∧ (ℑ‘𝐵) ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
217, 19, 20sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘𝐵)) ∈ ℂ)
2213, 16, 21adddid 10653 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) + (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))))
236, 12, 16adddird 10654 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
246, 12, 21adddird 10654 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
2523, 24oveq12d 7163 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
265, 15remulcld 10659 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
2726recnd 10657 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
2812, 21mulcld 10649 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) ∈ ℂ)
2912, 16mulcld 10649 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) ∈ ℂ)
306, 21mulcld 10649 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) ∈ ℂ)
3127, 28, 29, 30add42d 10857 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) + (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
327a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → i ∈ ℂ)
3332, 10, 32, 19mul4d 10840 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))))
34 ixi 11257 . . . . . . . . . . . 12 (i · i) = -1
3534oveq1i 7155 . . . . . . . . . . 11 ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵)))
369, 18remulcld 10659 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
3736recnd 10657 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
3837mulm1d 11080 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-1 · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
3935, 38syl5eq 2865 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · i) · ((ℑ‘𝐴) · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4033, 39eqtrd 2853 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))) = -((ℑ‘𝐴) · (ℑ‘𝐵)))
4140oveq2d 7161 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))))
4227, 37negsubd 10991 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + -((ℑ‘𝐴) · (ℑ‘𝐵))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
4341, 42eqtrd 2853 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
449, 15remulcld 10659 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℝ)
4544recnd 10657 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ)
46 mulcl 10609 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℑ‘𝐴) · (ℜ‘𝐵)) ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
477, 45, 46sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℂ)
485, 18remulcld 10659 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℝ)
4948recnd 10657 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ)
50 mulcl 10609 . . . . . . . . . 10 ((i ∈ ℂ ∧ ((ℜ‘𝐴) · (ℑ‘𝐵)) ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
517, 49, 50sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · ((ℜ‘𝐴) · (ℑ‘𝐵))) ∈ ℂ)
5247, 51addcomd 10830 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5332, 10, 16mulassd 10652 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) = (i · ((ℑ‘𝐴) · (ℜ‘𝐵))))
546, 32, 19mul12d 10837 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · (i · (ℑ‘𝐵))) = (i · ((ℜ‘𝐴) · (ℑ‘𝐵))))
5553, 54oveq12d 7163 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = ((i · ((ℑ‘𝐴) · (ℜ‘𝐵))) + (i · ((ℜ‘𝐴) · (ℑ‘𝐵)))))
5632, 49, 45adddid 10653 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5752, 55, 563eqtr4d 2863 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
5843, 57oveq12d 7163 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) + (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) + ((ℜ‘𝐴) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
5925, 31, 583eqtr2d 2859 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (ℜ‘𝐵)) + (((ℜ‘𝐴) + (i · (ℑ‘𝐴))) · (i · (ℑ‘𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
603, 22, 593eqtrd 2857 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))))
6160fveq2d 6667 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
6226, 36resubcld 11056 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ)
6348, 44readdcld 10658 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ)
64 crre 14461 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6562, 63, 64syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6661, 65eqtrd 2853 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))))
6760fveq2d 6667 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))))
68 crim 14462 . . . 4 (((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∈ ℝ ∧ (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∈ ℝ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
6962, 63, 68syl2anc 584 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) + (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
7067, 69eqtrd 2853 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))))
71 mulcl 10609 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
72 remim 14464 . . . 4 ((𝐴 · 𝐵) ∈ ℂ → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
7371, 72syl 17 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
74 remim 14464 . . . . 5 (𝐴 ∈ ℂ → (∗‘𝐴) = ((ℜ‘𝐴) − (i · (ℑ‘𝐴))))
75 remim 14464 . . . . 5 (𝐵 ∈ ℂ → (∗‘𝐵) = ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))
7674, 75oveqan12d 7164 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))))
7716, 21subcld 10985 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐵) − (i · (ℑ‘𝐵))) ∈ ℂ)
786, 12, 77subdird 11085 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) − (i · (ℑ‘𝐴))) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))))
7927, 30, 29, 28subadd4d 11033 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
806, 16, 21subdid 11084 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))))
8112, 16, 21subdid 11084 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) = (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8280, 81oveq12d 7163 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℜ‘𝐴) · (i · (ℑ‘𝐵)))) − (((i · (ℑ‘𝐴)) · (ℜ‘𝐵)) − ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵))))))
8365, 61, 433eqtr4d 2863 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))))
8470oveq2d 7161 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (i · (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8554, 53oveq12d 7163 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))) = ((i · ((ℜ‘𝐴) · (ℑ‘𝐵))) + (i · ((ℑ‘𝐴) · (ℜ‘𝐵)))))
8656, 84, 853eqtr4d 2863 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · (ℑ‘(𝐴 · 𝐵))) = (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵))))
8783, 86oveq12d 7163 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))) = ((((ℜ‘𝐴) · (ℜ‘𝐵)) + ((i · (ℑ‘𝐴)) · (i · (ℑ‘𝐵)))) − (((ℜ‘𝐴) · (i · (ℑ‘𝐵))) + ((i · (ℑ‘𝐴)) · (ℜ‘𝐵)))))
8879, 82, 873eqtr4d 2863 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((ℜ‘𝐴) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵)))) − ((i · (ℑ‘𝐴)) · ((ℜ‘𝐵) − (i · (ℑ‘𝐵))))) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
8976, 78, 883eqtrd 2857 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((∗‘𝐴) · (∗‘𝐵)) = ((ℜ‘(𝐴 · 𝐵)) − (i · (ℑ‘(𝐴 · 𝐵)))))
9073, 89eqtr4d 2856 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵)))
9166, 70, 903jca 1120 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((ℜ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℜ‘𝐵)) − ((ℑ‘𝐴) · (ℑ‘𝐵))) ∧ (ℑ‘(𝐴 · 𝐵)) = (((ℜ‘𝐴) · (ℑ‘𝐵)) + ((ℑ‘𝐴) · (ℜ‘𝐵))) ∧ (∗‘(𝐴 · 𝐵)) = ((∗‘𝐴) · (∗‘𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  1c1 10526  ici 10527   + caddc 10528   · cmul 10530  cmin 10858  -cneg 10859  ccj 14443  cre 14444  cim 14445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-cj 14446  df-re 14447  df-im 14448
This theorem is referenced by:  remul  14476  immul  14483  cjmul  14489
  Copyright terms: Public domain W3C validator